An Augmented-RBF Method for Solving Fractional Sturm-Liouville Eigenvalue Problems
暂无分享,去创建一个
[1] George E. Karniadakis,et al. Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..
[2] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[3] B. Ross,et al. Fractional Calculus and Its Applications , 1975 .
[4] Gregory E. Fasshauer,et al. Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..
[5] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[6] Om Prakash Agrawal,et al. Fractional Sturm-Liouville problem , 2013, Comput. Math. Appl..
[7] Richard K. Beatson,et al. Mollification formulas and implicit smoothing , 2007, Adv. Comput. Math..
[8] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[9] R. Agarwal,et al. A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .
[10] E. Kansa,et al. Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .
[11] G. Fix,et al. Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .
[12] Margarita Rivero,et al. A fractional approach to the Sturm-Liouville problem , 2013 .
[13] Qasem M. Al-Mdallal,et al. On the numerical solution of fractional Sturm–Liouville problems , 2010, Int. J. Comput. Math..
[14] A. Bogomolny. Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .
[15] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[16] A. Pskhu. On the real zeros of functions of Mittag-Leffler type , 2005 .
[17] Tobin A. Driscoll,et al. Computing Eigenmodes of Elliptic Operators Using Radial Basis Functions , 2003 .
[18] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[19] Vedat Suat Erturk,et al. Computing Eigenelements of Sturm–Liouville Problems of Fractional Order via Fractional Differential Transform Method , 2011 .
[20] S. Reutskiy. A Meshless Method for Nonlinear, Singular and Generalized Sturm-Liouville Problems , 2008 .
[21] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[22] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[23] Pedro R. S. Antunes,et al. A meshfree numerical method for acoustic wave propagation problems in planar domains with corners and cracks , 2010, J. Comput. Appl. Math..
[24] T. Osler. Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .
[25] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[26] M. Meerschaert,et al. Finite difference methods for two-dimensional fractional dispersion equation , 2006 .
[27] Fawang Liu,et al. Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..
[28] E. Kansa,et al. Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .
[29] C. Moler,et al. APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .
[30] Jan S. Hesthaven,et al. Stable multi-domain spectral penalty methods for fractional partial differential equations , 2014, J. Comput. Phys..
[31] Cécile Piret,et al. A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..
[32] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[33] George E. Karniadakis,et al. Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..
[34] Tobin A. Driscoll,et al. Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .
[35] A. Popov. On the number of real eigenvalues of a certain boundary-value problem for a second-order equation with fractional derivative , 2008 .
[36] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[37] Timo Betcke. The Generalized Singular Value Decomposition and the Method of Particular Solutions , 2008, SIAM J. Sci. Comput..
[38] T. Driscoll,et al. Observations on the behavior of radial basis function approximations near boundaries , 2002 .
[39] George E. Karniadakis,et al. Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..
[40] Nira Dyn,et al. Spectral convergence of multiquadric interpolation , 1993, Proceedings of the Edinburgh Mathematical Society.
[41] Jungho Yoon,et al. Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..
[42] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[43] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[44] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..