An Augmented-RBF Method for Solving Fractional Sturm-Liouville Eigenvalue Problems

In this work we construct numerical schemes, using radial basis functions (RBFs), to solve Sturm--Liouville eigenvalue problems in which the so-called fractional derivatives are involved. We take into account the fact that the solutions to such problems might be nonsmooth and, consequently, we augment the space generated by RBF base functions with some fractional polynomials to overcome this problem. We show through some examples the effectiveness of our method.

[1]  George E. Karniadakis,et al.  Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation , 2013, J. Comput. Phys..

[2]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[3]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[4]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[5]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[6]  Om Prakash Agrawal,et al.  Fractional Sturm-Liouville problem , 2013, Comput. Math. Appl..

[7]  Richard K. Beatson,et al.  Mollification formulas and implicit smoothing , 2007, Adv. Comput. Math..

[8]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[9]  R. Agarwal,et al.  A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions , 2010 .

[10]  E. Kansa,et al.  Exponential convergence and H‐c multiquadric collocation method for partial differential equations , 2003 .

[11]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[12]  Margarita Rivero,et al.  A fractional approach to the Sturm-Liouville problem , 2013 .

[13]  Qasem M. Al-Mdallal,et al.  On the numerical solution of fractional Sturm–Liouville problems , 2010, Int. J. Comput. Math..

[14]  A. Bogomolny Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .

[15]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[16]  A. Pskhu On the real zeros of functions of Mittag-Leffler type , 2005 .

[17]  Tobin A. Driscoll,et al.  Computing Eigenmodes of Elliptic Operators Using Radial Basis Functions , 2003 .

[18]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[19]  Vedat Suat Erturk,et al.  Computing Eigenelements of Sturm–Liouville Problems of Fractional Order via Fractional Differential Transform Method , 2011 .

[20]  S. Reutskiy A Meshless Method for Nonlinear, Singular and Generalized Sturm-Liouville Problems , 2008 .

[21]  Lloyd N. Trefethen,et al.  Reviving the Method of Particular Solutions , 2005, SIAM Rev..

[22]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[23]  Pedro R. S. Antunes,et al.  A meshfree numerical method for acoustic wave propagation problems in planar domains with corners and cracks , 2010, J. Comput. Appl. Math..

[24]  T. Osler Taylor’s Series Generalized for Fractional Derivatives and Applications , 1971 .

[25]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[26]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[27]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[28]  E. Kansa,et al.  Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .

[29]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[30]  Jan S. Hesthaven,et al.  Stable multi-domain spectral penalty methods for fractional partial differential equations , 2014, J. Comput. Phys..

[31]  Cécile Piret,et al.  A radial basis functions method for fractional diffusion equations , 2013, J. Comput. Phys..

[32]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[33]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[34]  Tobin A. Driscoll,et al.  Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .

[35]  A. Popov On the number of real eigenvalues of a certain boundary-value problem for a second-order equation with fractional derivative , 2008 .

[36]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[37]  Timo Betcke The Generalized Singular Value Decomposition and the Method of Particular Solutions , 2008, SIAM J. Sci. Comput..

[38]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[39]  George E. Karniadakis,et al.  Fractional Spectral Collocation Method , 2014, SIAM J. Sci. Comput..

[40]  Nira Dyn,et al.  Spectral convergence of multiquadric interpolation , 1993, Proceedings of the Edinburgh Mathematical Society.

[41]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[42]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[43]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[44]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..