PrimingBinding, RNA Packaging, and Protein Polymerase Sequences Required for Viral Comparative Analysis of Hepatitis B Virus

[1]  J. Tavis,et al.  Sequences in the terminal protein and reverse transcriptase domains of the hepatitis B virus polymerase contribute to RNA binding and encapsidation , 2014, Journal of viral hepatitis.

[2]  Scott A. Jones,et al.  Noncompetitive Inhibition of Hepatitis B Virus Reverse Transcriptase Protein Priming and DNA Synthesis by the Nucleoside Analog Clevudine , 2013, Antimicrobial Agents and Chemotherapy.

[3]  Scott A. Jones,et al.  Protein-Primed Terminal Transferase Activity of Hepatitis B Virus Polymerase , 2013, Journal of Virology.

[4]  Scott A. Jones,et al.  Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention , 2013, Emerging Microbes & Infections.

[5]  S. Sarafianos,et al.  The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes , 2013, PLoS pathogens.

[6]  Scott A. Jones,et al.  In Vitro Epsilon RNA-Dependent Protein Priming Activity of Human Hepatitis B Virus Polymerase , 2012, Journal of Virology.

[7]  W. Ryu,et al.  Hydrophobic residues of terminal protein domain of hepatitis B virus polymerase contribute to distinct steps in viral genome replication , 2011, FEBS letters.

[8]  Sunju Park,et al.  A conserved arginine residue in the terminal protein domain of hepatitis B virus polymerase is critical for RNA pre-genome encapsidation. , 2011, The Journal of general virology.

[9]  E. De Clercq,et al.  Antiviral Treatment of Chronic Hepatitis B Virus (HBV) Infections , 2010, Viruses.

[10]  F. Zoulim,et al.  Hepatitis B virus resistance to nucleos(t)ide analogues. , 2009, Gastroenterology.

[11]  Matthew P. Badtke,et al.  An interdomain RNA binding site on the hepadnaviral polymerase that is essential for reverse transcription. , 2009, Virology.

[12]  Seahee Kim,et al.  Four Conserved Cysteine Residues of the Hepatitis B Virus Polymerase Are Critical for RNA Pregenome Encapsidation , 2009, Journal of Virology.

[13]  Li Lin,et al.  RNA-protein interactions in hepadnavirus reverse transcription. , 2009, Frontiers in bioscience.

[14]  M. Nassal,et al.  Chaperones Activate Hepadnavirus Reverse Transcriptase by Transiently Exposing a C-Proximal Region in the Terminal Protein Domain That Contributes to ε RNA Binding , 2007, Journal of Virology.

[15]  S. Wijmenga,et al.  Thermodynamics and NMR studies on Duck, Heron and Human HBV encapsidation signals , 2007, Nucleic acids research.

[16]  Jianming Hu,et al.  Hepatitis B Virus Reverse Transcriptase and ε RNA Sequences Required for Specific Interaction In Vitro , 2006, Journal of Virology.

[17]  Matthew P. Badtke,et al.  Identification of an Essential Molecular Contact Point on the Duck Hepatitis B Virus Reverse Transcriptase , 2005, Journal of Virology.

[18]  D. Toft,et al.  Requirement of Heat Shock Protein 90 for Human Hepatitis B Virus Reverse Transcriptase Function , 2004, Journal of Virology.

[19]  Jianming Hu,et al.  Heat Shock Protein 90-Independent Activation of Truncated Hepadnavirus Reverse Transcriptase , 2003, Journal of Virology.

[20]  D. Toft,et al.  In Vitro Reconstitution of Functional Hepadnavirus Reverse Transcriptase with Cellular Chaperone Proteins , 2002, Journal of Virology.

[21]  Jianming Hu,et al.  In Vitro Reconstitution of a Functional Duck Hepatitis B Virus Reverse Transcriptase: Posttranslational Activation by Hsp90 , 2000, Journal of Virology.

[22]  W. Ryu,et al.  Evidence that the 5′-End Cap Structure Is Essential for Encapsidation of Hepatitis B Virus Pregenomic RNA , 2000, Journal of Virology.

[23]  R. Lanford,et al.  Mapping of the Hepatitis B Virus Reverse Transcriptase TP and RT Domains by Transcomplementation for Nucleotide Priming and by Protein-Protein Interaction , 1999, Journal of Virology.

[24]  J. Tavis,et al.  The Duck Hepatitis B Virus Polymerase Is Activated by Its RNA Packaging Signal, ɛ , 1998, Journal of Virology.

[25]  E. Brown,et al.  In vitro activity of hepatitis B virus polymerase: requirement for distinct metal ions and the viral epsilon stem-loop. , 1998, The Journal of general virology.

[26]  R. Lanford,et al.  Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase , 1997, Journal of virology.

[27]  C. Seeger,et al.  Hepadnavirus assembly and reverse transcription require a multi‐component chaperone complex which is incorporated into nucleocapsids , 1997, The EMBO journal.

[28]  J. Tavis,et al.  Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template , 1996, Journal of virology.

[29]  L. Wiens,et al.  Mutagenesis of a hepatitis B virus reverse transcriptase yields temperature-sensitive virus. , 1996, Virology.

[30]  M. Nassal,et al.  A bulged region of the hepatitis B virus RNA encapsidation signal contains the replication origin for discontinuous first-strand DNA synthesis , 1996, Journal of virology.

[31]  C. Seeger,et al.  Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Seeger,et al.  Expression and characterization of hepadnavirus reverse transcriptases. , 1996, Methods in enzymology.

[33]  J. Tavis,et al.  RNA sequences controlling the initiation and transfer of duck hepatitis B virus minus-strand DNA , 1995, Journal of virology.

[34]  R. Lanford,et al.  Nucleotide priming and reverse transcriptase activity of hepatitis B virus polymerase expressed in insect cells , 1995, Journal of virology.

[35]  F. Zoulim,et al.  Role of RNA in enzymatic activity of the reverse transcriptase of hepatitis B viruses , 1994, Journal of virology.

[36]  J. Pollack,et al.  Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis , 1994, Journal of virology.

[37]  P. Marion,et al.  Selected mutations of the duck hepatitis B virus P gene RNase H domain affect both RNA packaging and priming of minus-strand DNA synthesis , 1994, Journal of virology.

[38]  J. Tavis,et al.  Hepadnavirus reverse transcription initiates within the stem-loop of the RNA packaging signal and employs a novel strand transfer , 1994, Journal of virology.

[39]  R. Bartenschlager,et al.  Hepadnavirus P protein utilizes a tyrosine residue in the TP domain to prime reverse transcription , 1994, Journal of virology.

[40]  F. Zoulim,et al.  Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase , 1994, Journal of virology.

[41]  M. Nassal,et al.  The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. , 1993, Nucleic acids research.

[42]  J. Pollack,et al.  An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation , 1993, Journal of virology.

[43]  C. Seeger,et al.  The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis , 1992, Cell.

[44]  R. Bartenschlager,et al.  Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. , 1992, The EMBO journal.

[45]  A. Faruqi,et al.  Pregenomic RNA encapsidation analysis of eleven missense and nonsense polymerase mutants of human hepatitis B virus , 1991, Journal of virology.

[46]  J. Pollack,et al.  cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA , 1991, Journal of virology.

[47]  H. Varmus,et al.  Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase , 1990, Journal of virology.

[48]  R. Bartenschlager,et al.  The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation , 1990, Journal of virology.

[49]  G. Radziwill,et al.  Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity , 1990, Journal of virology.

[50]  R. Bartenschlager,et al.  The amino‐terminal domain of the hepadnaviral P‐gene encodes the terminal protein (genome‐linked protein) believed to prime reverse transcription. , 1988, The EMBO journal.

[51]  T. Miyata,et al.  Sequence homology between retroviral reverse transcriptase and putative polymerases of hepatitis B virus and cauliflower mosaic virus , 1983, Nature.

[52]  J. Summers,et al.  Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate , 1982, Cell.