Pruning convolution neural network (squeezenet) using taylor expansion-based criterion
暂无分享,去创建一个
[1] Forrest N. Iandola,et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.
[2] Timo Aila,et al. Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning , 2016, ArXiv.
[3] Jacek M. Zurada,et al. Building Efficient ConvNets using Redundant Feature Pruning , 2018, ArXiv.
[4] Hanan Samet,et al. Pruning Filters for Efficient ConvNets , 2016, ICLR.
[5] H. Howie Huang,et al. Performance Analysis of GPU-Based Convolutional Neural Networks , 2016, 2016 45th International Conference on Parallel Processing (ICPP).
[6] Wonyong Sung,et al. Structured Pruning of Deep Convolutional Neural Networks , 2015, ACM J. Emerg. Technol. Comput. Syst..
[7] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[8] Yann LeCun,et al. Optimal Brain Damage , 1989, NIPS.