2 3 A ug 2 00 6 Analysis of a 3 D chaotic system

A 3D nonlinear chaotic system, called the T system, is analyzed in this paper. Horseshoe chaos is investigated via the heteroclinic Shilnikov method constructing a heteroclinic connections between the saddle equilibrium points of the system. Partially numerical computations are carried out to support the analytical results.

[1]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[2]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[4]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[5]  M. Naschie Non-linear dynamics and infinite dimensional topology in high energy particle physics , 2003 .

[6]  Lansun Chen,et al.  Quasiperiodic Solutions and Chaos in a Periodically Forced Predator-prey Model with Age Structure for predator , 2003, Int. J. Bifurc. Chaos.

[7]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[8]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[9]  Gonzalo Alvarez,et al.  Breaking projective chaos synchronization secure communication using filtering and generalized synchronization , 2004, Chaos, Solitons & Fractals.

[10]  Guanrong Chen,et al.  Complex dynamics in Chen’s system☆ , 2006 .

[11]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[12]  M. Naschie Peano dynamics as a model for ergodic and strange nonchaotic behaviour , 1992 .

[13]  P. L. Sachdev,et al.  Periodic and Chaotic Solutions for a Nonlinear System Arising from a Nuclear Spin Generator , 1994 .

[14]  Hsien-Keng Chen,et al.  Anti-control of chaos in rigid body motion , 2004 .

[15]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[16]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.