The globalization theorem for the Curvature-Dimension condition

The Lott–Sturm–Villani Curvature-Dimension condition provides a synthetic notion for a metric-measure space to have Ricci-curvature bounded from below and dimension bounded from above. We prove that it is enough to verify this condition locally: an essentially non-branching metric-measure space $$(X,\mathsf {d},{\mathfrak {m}})$$ ( X , d , m ) (so that $$(\text {supp}({\mathfrak {m}}),\mathsf {d})$$ ( supp ( m ) , d ) is a length-space and $${\mathfrak {m}}(X) < \infty $$ m ( X ) < ∞ ) verifying the local Curvature-Dimension condition $${\mathsf {CD}}_{loc}(K,N)$$ CD loc ( K , N ) with parameters $$K \in {\mathbb {R}}$$ K ∈ R and $$N \in (1,\infty )$$ N ∈ ( 1 , ∞ ) , also verifies the global Curvature-Dimension condition $${\mathsf {CD}}(K,N)$$ CD ( K , N ) . In other words, the Curvature-Dimension condition enjoys the globalization (or local-to-global) property, answering a question which had remained open since the beginning of the theory. For the proof, we establish an equivalence between $$L^1$$ L 1 - and $$L^2$$ L 2 -optimal-transport–based interpolation. The challenge is not merely a technical one, and several new conceptual ingredients which are of independent interest are developed: an explicit change-of-variables formula for densities of Wasserstein geodesics depending on a second-order temporal derivative of associated Kantorovich potentials; a surprising third-order theory for the latter Kantorovich potentials, which holds in complete generality on any proper geodesic space; and a certain rigidity property of the change-of-variables formula, allowing us to bootstrap the a-priori available regularity. As a consequence, numerous variants of the Curvature-Dimension condition proposed by various authors throughout the years are shown to, in fact, all be equivalent in the above setting, thereby unifying the theory.

[1]  Anton Petrunin,et al.  Alexandrov meets Lott-Villani-Sturm , 2010, 1003.5948.

[2]  Emanuel Milman Sharp Isoperimetric Inequalities and Model Spaces for Curvature-Dimension-Diameter Condition , 2011 .

[3]  Self‐intersection of optimal geodesics , 2012, 1211.6547.

[4]  Karl-Theodor Sturm,et al.  Optimal Maps and Exponentiation on Finite-Dimensional Spaces with Ricci Curvature Bounded from Below , 2013, 1305.4849.

[5]  Michele Miranda,et al.  Functions of bounded variation on “good” metric spaces , 2003 .

[6]  M. Gromov,et al.  Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces , 1987 .

[7]  L. Ambrosio,et al.  Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure , 2012, 1207.4924.

[8]  Dario Cordero-Erausquin,et al.  Some Applications of Mass Transport to Gaussian-Type Inequalities , 2002 .

[9]  M. Gromov Paul Levy's isoperimetric inequality , 1980 .

[10]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[11]  Karl-Theodor Sturm,et al.  Local curvature-dimension condition implies measure-contraction property , 2011, 1112.4991.

[12]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[13]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[14]  Nestor Guillen,et al.  Five lectures on optimal transportation: Geometry, regularity and applications , 2010, 1011.2911.

[15]  F. Cavalletti,et al.  Monge problem in metric measure spaces with Riemannian curvature-dimension condition , 2013, 1310.4036.

[16]  S. Rachev,et al.  Mass transportation problems , 1998 .

[17]  A. Mondino,et al.  Optimal maps in essentially non-branching spaces , 2016, 1609.00782.

[18]  Emanuel Milman,et al.  Beyond traditional Curvature-Dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension , 2014, 1409.4109.

[19]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[20]  Simone Di Marino,et al.  Equivalent definitions of BV space and of total variation on metric measure spaces , 2014 .

[21]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[22]  Shashi M. Srivastava,et al.  A Course on Borel Sets , 1998, Graduate texts in mathematics.

[23]  F. Cavalletti,et al.  An Overview of L1 optimal transportation on metric measure spaces , 2017, 1809.04859.

[24]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[25]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong C D ( K , ∞ ) -spaces , 2013 .

[26]  R. McCann,et al.  Monge's transport problem on a Riemannian manifold , 2001 .

[27]  S. Bianchini,et al.  The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.

[28]  F. Cavalletti Decomposition of geodesics in the Wasserstein space and the globalization property , 2012, 1209.5909.

[29]  Shin-ichi Ohta Needle decompositions and isoperimetric inequalities in Finsler geometry , 2015, 1506.05876.

[30]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[31]  L. Ambrosio,et al.  Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces , 2015, Memoirs of the American Mathematical Society.

[32]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[33]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[34]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[35]  T. Rajala Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm , 2011, 1111.5526.

[36]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[37]  Weak curvature conditions and functional inequalities , 2005, math/0506481.

[38]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[39]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[40]  N. Gigli On the differential structure of metric measure spaces and applications , 2012, 1205.6622.

[41]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[42]  John Lott,et al.  Hamilton–Jacobi semigroup on length spaces and applications , 2006 .

[43]  L. Ambrosio,et al.  Special Functions of Bounded Variation in Doubling Metric Measure Spaces , 2004 .

[44]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[45]  T. Rajala Failure of the local-to-global property for CD(K,N) spaces , 2013, 1305.6436.

[46]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[47]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[48]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[49]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[50]  Bo'az Klartag,et al.  Needle decompositions in Riemannian geometry , 2014, 1408.6322.

[51]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[52]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[53]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong $$CD(K,\infty )$$CD(K,∞)-spaces , 2012, 1207.6754.

[54]  S. Bianchini,et al.  On the extremality, uniqueness and optimality of transference plans , 2009 .

[55]  C. Villani Topics in Optimal Transportation , 2003 .

[56]  F. Cavalletti,et al.  Decomposition of Geodesics in the Wasserstein Space and the Globalization Problem , 2014 .

[57]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[58]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[59]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[60]  A. Mondino,et al.  Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds , 2015, 1505.02061.

[61]  L. Ambrosio,et al.  Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds , 2012, 1209.5786.

[62]  L. Ambrosio,et al.  On the Bakry–Émery Condition, the Gradient Estimates and the Local-to-Global Property of $$\mathsf{RCD}^*(K,N)$$RCD∗(K,N) Metric Measure Spaces , 2016 .

[63]  L. Ambrosio Fine Properties of Sets of Finite Perimeter in Doubling Metric Measure Spaces , 2002 .

[64]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[65]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[66]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[67]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[68]  Shin-ichi Ohta (K, N)-Convexity and the Curvature-Dimension Condition for Negative N , 2013, 1310.7993.

[69]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[70]  On local Poincaré via transportation , 2005, math/0505588.

[71]  Karl-Theodor Sturm,et al.  Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces , 2010, 1003.2116.

[72]  Shin-Ichi Ohta,et al.  Finsler interpolation inequalities , 2009 .

[73]  The exact Peano derivative , 1954 .

[74]  L. Ambrosio,et al.  On the Bakry-\'Emery condition, the gradient estimates and the Local-to-Global property of RCD*(K,N) metric measure spaces , 2013, 1309.4664.