Exact inequalities for sums of asymmetric random variables, with applications

Let $${{\rm BS}_{1},\dots,{\rm BS}_{n}}$$ be independent identically distributed random variables each having the standardized Bernoulli distribution with parameter $${p \in (0, 1)}$$ . Let $${m_*(p):=(1 + p + 2 p^{2})/(2\sqrt{p - p^{2}} + 4 p^{2})}$$ if $${0 < p \le \frac12}$$ and $${m_{*}(p) := 1 if \frac12 \le p < 1}$$ . Let $${m \ge m_{*}(p)}$$ . Let f be such a function that f and f′′ are nondecreasing and convex. Then it is proved that for all nonnegative numbers $${c_{1},\dots,c_{n}}$$ one has the inequality $${{\mathsf{E}} f(c_1{\mathrm{B\!S}}_1+\dots+c_n{\mathrm{B\!S}}_n)\le{\mathsf{E}} f\big(s^{(m)}({\mathrm{B\!S}}_1+\dots+{\mathrm{BS}}_{n})\big),}$$ where $${s^{(m)}:=\big(\frac1n\,\sum_{i=1}^n c_i^{2m}\big)^\frac1{2m}}$$ . The lower bound $${m_{*}(p)}$$ on m is exact for each $${p \in (0,1)}$$ . Moreover, $${{\operatorname{\mathsf{E}}} f(c_1{\mathrm{B\!S}}_1+\dots+c_n{\mathrm{B\!S}}_n)}$$ is Schur-concave in $${(c_{1}^{2m},\ldots,c_{n}^{2m})}$$ .A number of corollaries are obtained, including upper bounds on generalized moments and tail probabilities of (super)martingales with differences of bounded asymmetry, and also upper bounds on the maximal function of such (super)martingales. Applications to generalized self-normalized sums and t-statistics are given.

[1]  An inequality in probability theory , 1955 .

[2]  I. Pinelis Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above , 2005, math/0512301.

[3]  D. Edelman An Inequality of Optimal Order for the Tail Probabilities of the T Statistic Under Symmetry , 1990 .

[4]  C. Mallows,et al.  Limit Distributions of Self-normalized Sums , 1973 .

[5]  J. Zinn,et al.  Extremal properties of Rademacher functions with applications to the Khintchine and Rosenthal inequalities , 1997 .

[6]  Morris L. Eaton,et al.  A Probability Inequality for Linear Combinations of Bounded Random Variables , 1974 .

[7]  P. Whittle,et al.  Bounds for the Moments of Linear and Quadratic Forms in Independent Variables , 1960 .

[8]  S. Szarek On the best constants in the Khinchin inequality , 1976 .

[9]  V. Bentkus,et al.  A Remark on Bernstein, Prokhorov, Bennett, Hoeffding, and Talagrand Inequalities , 2002 .

[10]  V. Bentkus On measure concentration for separately Lipschitz functions in product spaces , 2007 .

[11]  V. Bentkus An Inequality for Tail Probabilities of Martingales with Differences Bounded from One Side , 2003 .

[12]  I. Pinelis Optimal Tail Comparison Based on Comparison of Moments , 1998 .

[13]  I. Pinelis Extremal Probabilistic Problems and Hotelling's $T^2$ Test Under a Symmetry Condition , 1994, math/0701806.

[14]  V. Bentkus,et al.  On domination of tail probabilities of (super)martingales: Explicit bounds , 2006 .

[15]  L. V. Osipov On Probabilities of Large Deviations for Sums of Independent Random Variables , 1973 .

[16]  R. Phelps Lectures on Choquet's Theorem , 1966 .

[17]  I. Pinelis Dimensionality Reduction in Extremal Problems for Moments of Linear Combinations of Vectors with Random Coefficients , 2003 .

[18]  E. Berger Comparing sums of independent bounded random variables and sums of Bernoulli random variables , 1997 .

[19]  W. Feller Generalization of a probability limit theorem of Cramér , 1943 .

[20]  R. Muirhead Some Methods applicable to Identities and Inequalities of Symmetric Algebraic Functions of n Letters , 1902 .

[21]  Sergey G. Bobkov,et al.  On Gaussian and Bernoulli covariance representations , 2001 .

[22]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[23]  I. Pinelis On inequalities for sums of bounded random variables , 2006, math/0603030.

[24]  E. Ostrovsky,et al.  A Remark on the Inequalities of Bernstein - Markov Type in Exponential Orlicz and Lorentz Spaces , 2004 .

[25]  V. Peña,et al.  On Extremal Distributions and Sharp L[sub]p-Bounds For Sums of Multilinear Forms. , 2003 .

[26]  V. Bentkus On Hoeffding’s inequalities , 2004, math/0410159.

[27]  M. Hallin,et al.  Improved Eaton bounds for linear combinations of bounded random variables , 1993 .

[28]  Student's t-test without symmetry conditions , 2006, math/0606160.

[29]  G. Choquet Theory of capacities , 1954 .

[30]  Morris L. Eaton,et al.  A Note on Symmetric Bernoulli Random Variables , 1970 .

[31]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[32]  Q. Shao Self-normalized large deviations , 1997 .

[33]  I. Pinelis On normal domination of (super)martingales , 2005, math/0512382.

[34]  Iosif Pinelis,et al.  Toward the best constant factor for the Rademacher-Gaussian tail comparison , 2006 .

[35]  Q. Shao,et al.  Saddlepoint approximation for Student’s t-statistic with no moment conditions , 2004, math/0508604.

[36]  W. Ames Mathematics in Science and Engineering , 1999 .

[37]  B. Efron Student's t-Test under Symmetry Conditions , 1969 .

[38]  T. Lai,et al.  SELF-NORMALIZED PROCESSES: EXPONENTIAL INEQUALITIES, MOMENT BOUNDS AND ITERATED LOGARITHM LAWS , 2004, math/0410102.

[39]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[40]  U. Haagerup The best constants in the Khintchine inequality , 1981 .

[41]  A. Khintchine Über dyadische Brüche , 1923 .