Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.

[1]  V. Dvornyk,et al.  Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes , 2015, PloS one.

[2]  S. Weber,et al.  Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome – protonated and nonprotonated flavin radical‐states , 2015, The FEBS journal.

[3]  E. Groenen,et al.  Simulation of multi-frequency EPR spectra for a distribution of the zero-field splitting. , 2015, Journal of magnetic resonance.

[4]  S. Kais,et al.  The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement , 2015, 1502.00671.

[5]  L. Essen,et al.  Cellular Metabolites Enhance the Light Sensitivity of Arabidopsis Cryptochrome through Alternate Electron Transfer Pathways[C][W][OPEN] , 2014, Plant Cell.

[6]  N. Scrutton,et al.  Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae , 2014, Scientific Reports.

[7]  P. Hore,et al.  Alternative radical pairs for cryptochrome-based magnetoreception , 2014, Journal of The Royal Society Interface.

[8]  S. Zhang,et al.  Flavin reduction activates Drosophila cryptochrome , 2013, Proceedings of the National Academy of Sciences.

[9]  A. Kramer,et al.  Structures of Drosophila Cryptochrome and Mouse Cryptochrome1 Provide Insight into Circadian Function , 2013, Cell.

[10]  J. Widom,et al.  Updated structure of Drosophila cryptochrome , 2013, Nature.

[11]  E. Getzoff,et al.  Variable Electron Transfer Pathways in an Amphibian Cryptochrome , 2013, The Journal of Biological Chemistry.

[12]  Ravi S Kane,et al.  Optogenetic protein clustering and signaling activation in mammalian cells , 2013, Nature Methods.

[13]  A. Grossman,et al.  A Flavin Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii[W] , 2012, Plant Cell.

[14]  Katharine M. Mullen,et al.  Glotaran: A Java-Based Graphical User Interface for the R Package TIMP , 2012 .

[15]  A. Losi,et al.  The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy blue-light sensors. , 2012, Annual review of plant biology.

[16]  Stefan Weber,et al.  Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor , 2012, Proceedings of the National Academy of Sciences.

[17]  G. Klug,et al.  CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors , 2012, EMBO reports.

[18]  E. Getzoff,et al.  Unexpected electron transfer in cryptochrome identified by time-resolved EPR spectroscopy. , 2011, Angewandte Chemie.

[19]  T. Carell,et al.  Crystal structures of an archaeal class II DNA photolyase and its complex with UV‐damaged duplex DNA , 2011, The EMBO journal.

[20]  T. Ritz,et al.  The cryptochromes: blue light photoreceptors in plants and animals. , 2011, Annual review of plant biology.

[21]  K. Gardner,et al.  Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. , 2011, Biochemistry.

[22]  A. Sancar,et al.  Reaction mechanism of Drosophila cryptochrome , 2010, Proceedings of the National Academy of Sciences.

[23]  E. Getzoff,et al.  Origin of light-induced spin-correlated radical pairs in cryptochrome. , 2010, The journal of physical chemistry. B.

[24]  M. Ehlers,et al.  Rapid blue light induction of protein interactions in living cells , 2010, Nature Methods.

[25]  B. Liu,et al.  Searching for a photocycle of the cryptochrome photoreceptors. , 2010, Current opinion in plant biology.

[26]  T. Langenbacher,et al.  Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome. , 2009, Journal of the American Chemical Society.

[27]  T. Carell,et al.  Structural biology of DNA photolyases and cryptochromes. , 2009, Current opinion in structural biology.

[28]  F. Forneris,et al.  ThermoFAD, a Thermofluor®‐adapted flavin ad hoc detection system for protein folding and ligand binding , 2009, The FEBS journal.

[29]  P. Hore,et al.  Chemical magnetoreception in birds: The radical pair mechanism , 2009, Proceedings of the National Academy of Sciences.

[30]  E. Getzoff,et al.  Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. , 2009, Angewandte Chemie.

[31]  A. Bacher,et al.  Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase , 2008, Proceedings of the National Academy of Sciences.

[32]  Steven M. Reppert,et al.  Cryptochrome mediates light-dependent magnetosensitivity in Drosophila , 2008, Nature.

[33]  E. Wolf,et al.  Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells , 2008, PLoS biology.

[34]  P. Hore,et al.  Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. , 2008, Biophysical journal.

[35]  A. Schnegg,et al.  G-tensors of the flavin adenine dinucleotide radicals in glucose oxidase: a comparative multifrequency electron paramagnetic resonance and electron-nuclear double resonance study. , 2008, The journal of physical chemistry. B.

[36]  A. Sancar,et al.  Animal Type 1 Cryptochromes , 2008, Journal of Biological Chemistry.

[37]  R. Bittl,et al.  The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin Semiquinone* , 2007, Journal of Biological Chemistry.

[38]  E. Wolf,et al.  A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome* , 2007, Journal of Biological Chemistry.

[39]  Danielle E. Chandler,et al.  Magnetic field effects in Arabidopsis thaliana cryptochrome-1. , 2007, Biophysical journal.

[40]  Filip Vandenbussche,et al.  Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States* , 2007, Journal of Biological Chemistry.

[41]  E. Mazzoni,et al.  Drosophila CRYPTOCHROME Is a Circadian Transcriptional Repressor , 2006, Current Biology.

[42]  S. Un The g‐values and hyperfine coupling of amino acid radicals in proteins: comparison of experimental measurements with ab initio calculations , 2005, Magnetic resonance in chemistry : MRC.

[43]  Henrik Mouritsen,et al.  Magnetoreception and its use in bird navigation , 2005, Current Opinion in Neurobiology.

[44]  J. Bouly,et al.  Light-induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with in Vivo Function* , 2005, Journal of Biological Chemistry.

[45]  R. Bittl,et al.  Transient radical pairs studied by time-resolved EPR. , 2005, Biochimica et biophysica acta.

[46]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[47]  T. Todo,et al.  Photoactivation of the flavin cofactor in Xenopus laevis (6–4) photolyase: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W. Lubitz,et al.  Tryptophan and tyrosine radicals in ribonucleotide reductase: a comparative high-field EPR study at 94 GHz. , 2001, Biochemistry.

[49]  A. Eker,et al.  Intraprotein radical transfer during photoactivation of DNA photolyase , 2000, Nature.

[50]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[51]  D. V. Leenen,et al.  Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms , 1999, Nature.

[52]  Jeffrey C. Hall,et al.  The cryb Mutation Identifies Cryptochrome as a Circadian Photoreceptor in Drosophila , 1998, Cell.

[53]  A. Sancar,et al.  Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. , 1991, Biochemistry.

[54]  Klaus Schulten,et al.  Magnetic Field Effects in Chemistry and Biology , 1982 .

[55]  E. Hayon,et al.  Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. , 1975, Journal of the American Chemical Society.

[56]  E. Hayon,et al.  Excited state chemistry of aromatic amino acids and related peptides. I. Tyrosine. , 1975, Journal of the American Chemical Society.

[57]  H. Mcconnell Indirect Hyperfine Interactions in the Paramagnetic Resonance Spectra of Aromatic Free Radicals , 1956 .

[58]  S. Iwai,et al.  Electronic Supplementary Information Discovery and Functional Analysis of a 4 Th Electron-transferring Tryptophan Conserved Exclusively in Animal Cryptochromes and (6-4) Photolyases , 2022 .