Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion

[1]  Ramato Ashu Tufa,et al.  Effect of Mg2+ ions on energy generation by Reverse Electrodialysis , 2016 .

[2]  Francesco Giacalone,et al.  Characterization of pressure retarded osmosis lab-scale systems , 2016 .

[3]  Giorgio Micale,et al.  Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines , 2016 .

[4]  Andrea Cipollina,et al.  Sustainable Energy from Salinity Gradients , 2016 .

[5]  Antonio Piacentino,et al.  Salinity gradient engines , 2016 .

[6]  Michele Ciofalo,et al.  Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study , 2016 .

[7]  A. Cipollina,et al.  Performance of a RED system with ammonium hydrogen carbonate solutions , 2016 .

[8]  Ramato Ashu Tufa,et al.  Membrane Distillation and Reverse Electrodialysis for Near-Zero Liquid Discharge and low energy seawater desalination , 2015 .

[9]  Mehdi Mehrpooya,et al.  Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector , 2015 .

[10]  B. Logan,et al.  Influence of solution concentration and salt types on the performance of reverse electrodialysis cells , 2015 .

[11]  Kilsung Kwon,et al.  Parametric study of reverse electrodialysis using ammonium bicarbonate solution for low-grade waste heat recovery , 2015 .

[12]  Michael Papapetrou,et al.  Analysis and simulation of scale-up potentials in reverse electrodialysis , 2015 .

[13]  W. Shane Walker,et al.  Junction potentials in thermolytic reverse electrodialysis , 2015 .

[14]  Dong-Kwon Kim,et al.  Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores , 2015 .

[15]  Meagan S. Mauter,et al.  Water Treatment Capacity of Forward-Osmosis Systems Utilizing Power-Plant Waste Heat , 2015 .

[16]  B. Ninham,et al.  Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator. , 2015, The journal of physical chemistry. B.

[17]  Sang-Jin Park,et al.  Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate , 2015 .

[18]  Giorgio Micale,et al.  A simulation tool for analysis and design of reverse electrodialysis using concentrated brines , 2015 .

[19]  Baosheng Jin,et al.  Modeling of the NH3–CO2–H2O vapor–liquid equilibria behavior with species-group Pitzer activity coefficient model , 2014 .

[20]  João G. Crespo,et al.  Mass transfer in reverse electrodialysis: Flow entrance effects and diffusion boundary layer thickness , 2014 .

[21]  Michele Ciofalo,et al.  CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis , 2014 .

[22]  Dong-Kwon Kim,et al.  Numerical analysis of transport phenomena in reverse electrodialysis for system design and optimization , 2014 .

[23]  Rien Herber,et al.  Upscale potential and financial feasibility of a reverse electrodialysis power plant , 2014 .

[24]  Ashkan Iranshahi,et al.  Static mixing spacers for spiral wound modules , 2013 .

[25]  Menachem Elimelech,et al.  High Efficiency in Energy Generation from Salinity Gradients with Reverse Electrodialysis , 2013 .

[26]  Woo-Seung Kim,et al.  Experimental study on the performance evaluation of vacuum distillation process for NH4HCO3 removal , 2013 .

[27]  Sung Jin Kim,et al.  Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores , 2013 .

[28]  Andrea Cipollina,et al.  Modelling the Reverse ElectroDialysis process with seawater and concentrated brines , 2012 .

[29]  Michele Ciofalo,et al.  CFD simulation of channels for direct and reverse electrodialysis , 2012 .

[30]  M. Elimelech,et al.  Membrane-based processes for sustainable power generation using water , 2012, Nature.

[31]  K. Xiao,et al.  Power generation by coupling reverse electrodialysis and ammonium bicarbonate: Implication for recovery of waste heat , 2012 .

[32]  Srinivas Garimella,et al.  Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA , 2011 .

[33]  Chau-Chyun Chen,et al.  Thermodynamic Modeling of the NH3–CO2–H2O System with Electrolyte NRTL Model , 2011 .

[34]  A. B. Little,et al.  Comparative assessment of alternative cycles for waste heat recovery and upgrade , 2011 .

[35]  J. Veerman,et al.  Reverse electrodialysis: A validated process model for design and optimization , 2011 .

[36]  Andrea Achilli,et al.  Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation — Review , 2010 .

[37]  G. J. Harmsen,et al.  Reverse electrodialysis : Performance of a stack with 50 cells on the mixing of sea and river water , 2009 .

[38]  Robert L McGinnis,et al.  A novel ammonia–carbon dioxide osmotic heat engine for power generation , 2007 .

[39]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[40]  Menachem Elimelech,et al.  Energy requirements of ammonia-carbon dioxide forward osmosis desalination , 2007 .

[41]  Menachem Elimelech,et al.  A novel ammonia-carbon dioxide forward (direct) osmosis desalination process , 2005 .

[42]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[43]  Victor M.M. Lobo,et al.  Handbook of electrolyte solutions , 1989 .

[44]  H. Levy,et al.  Capital investment and financial decisions , 1978 .

[45]  R. S. Norman,et al.  Osmotic power plants. , 1975, Science.

[46]  R. S. Norman Water Salination: A Source of Energy , 1974, Science.

[47]  R. E. Pattle Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile , 1954, Nature.

[48]  Grinnell Jones,et al.  The Conductance of Aqueous Solutions as a Function of the Concentration. I. Potassium Bromide and Lanthanum Chloride , 1934 .