Rare-Earth Metal-Tetrathiafulvalene Carboxylate-Frameworks as Redox-Switchable Single-Molecule-Magnets.

Using the redox-active tetrathiafulvalene tetrabenzoate (TTFTB 4- ) as the linker, we constructed a series of stable and porous rare-earth metal-organic frameworks (RE-MOFs), [RE 9 (μ 3 -OH) 13 (μ 3 -O)(H 2 O) 9 (TTFTB) 3 ] ( 1-RE , where RE = Y, Sm, Gd, Tb, Dy, Ho, and Er). The RE 9 (μ 3 -OH) 13 (μ 3 -O) (H 2 O) 9 ](CO 2 ) 12 clusters within 1-RE act as segregated single-molecule magnets (SMMs) displaying slow relaxation. Interestingly, upon oxidation by I 2 , the S = 0 TTFTB 4- linkers of 1-RE were converted into S = ½ TTFTB •3+ radical linkers which introduced exchange-coupling between SMMs and modulated the relaxation. Furthermore, the SMM property can be restored by the reduction in N, N -dimethylformamide. These results highlight the advantage of MOFs in the construction of redox-switchable SMMs.

[1]  B. le Guennic,et al.  Redox- and solvato-magnetic switching in a tetrathiafulvalene-based triad single-molecule magnet , 2020, Inorganic Chemistry Frontiers.

[2]  J. Zuo,et al.  High Electrical Conductivity in a 2D MOF with Intrinsic Superprotonic Conduction and Interfacial Pseudo-capacitance , 2020 .

[3]  Christina T. Lollar,et al.  Zirconium metal–organic frameworks incorporating tetrathiafulvalene linkers: robust and redox-active matrices for in situ confinement of metal nanoparticles , 2020, Chemical science.

[4]  M. O'keeffe,et al.  Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive related Nets: Access to Highly-coordinated MOFs based on Double Six-membered Rings as net-coded Building Units. , 2019, Journal of the American Chemical Society.

[5]  B. le Guennic,et al.  Electro-activity and magnetic switching in lanthanide-based single-molecule magnets , 2019, Inorganic Chemistry Frontiers.

[6]  B. le Guennic,et al.  Decorated Tetrathiafulvalene-Based Ligands: Powerful Chemical Tools for the Design of Single-Molecule Magnets , 2019, European Journal of Inorganic Chemistry.

[7]  K. Nakabayashi,et al.  Photoluminescent Lanthanide(III) Single-Molecule Magnets in Three-Dimensional Polycyanidocuprate(I)-Based Framework. , 2019, Chemistry.

[8]  Lilia S. Xie,et al.  Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks† †Electronic supplementary information (ESI) available. CCDC 1936715–1936717. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9sc03348c , 2019, Chemical science.

[9]  José J. Baldoví,et al.  Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks. , 2019, Chemistry.

[10]  D. D’Alessandro,et al.  Redox Activities of Metal-Organic Frameworks Incorporating Rare-Earth Metal Chains and Tetrathiafulvalene Linkers. , 2019, Inorganic chemistry.

[11]  Lilia S. Xie,et al.  Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal‐Organic Frameworks , 2018, Israel Journal of Chemistry.

[12]  A. Walsh,et al.  Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework , 2018, Journal of the American Chemical Society.

[13]  B. le Guennic,et al.  Magnetic Slow Relaxation in a Metal-Organic Framework Made of Chains of Ferromagnetically Coupled Single-Molecule Magnets. , 2018, Chemistry.

[14]  Christopher H. Hendon,et al.  Selective Vapor Pressure Dependent Proton Transport in a Metal-Organic Framework with Two Distinct Hydrophilic Pores. , 2018, Journal of the American Chemical Society.

[15]  H. García,et al.  A highly stable and hierarchical tetrathiafulvalene-based metal–organic framework with improved performance as a solid catalyst , 2018, Chemical science.

[16]  G. Mínguez Espallargas,et al.  Magnetic functionalities in MOFs: from the framework to the pore. , 2018, Chemical Society reviews.

[17]  J. Zuo,et al.  Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks , 2017, Nature Communications.

[18]  D. D’Alessandro,et al.  Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives , 2017 .

[19]  J. Long,et al.  A Trinuclear Radical-Bridged Lanthanide Single-Molecule Magnet. , 2017, Angewandte Chemie.

[20]  M. Eddaoudi,et al.  A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control. , 2017, Journal of the American Chemical Society.

[21]  D. D’Alessandro,et al.  Photo- and Electronically Switchable Spin-Crossover Iron(II) Metal-Organic Frameworks Based on a Tetrathiafulvalene Ligand. , 2017, Angewandte Chemie.

[22]  Christopher H. Hendon,et al.  The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. , 2017, Journal of the American Chemical Society.

[23]  M. O'keeffe,et al.  Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. , 2017, Journal of the American Chemical Society.

[24]  Fei Wang,et al.  A series of robust metal-porphyrinic frameworks based on rare earth clusters and their application in N-H carbene insertion. , 2016, Dalton transactions.

[25]  D. D’Alessandro Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. , 2016, Chemical communications.

[26]  F. Grandjean,et al.  Electron Hopping through Double-Exchange Coupling in a Mixed-Valence Diiminobenzoquinone-Bridged Fe2 Complex. , 2015, Journal of the American Chemical Society.

[27]  Song Gao,et al.  Influence of Guest Exchange on the Magnetization Dynamics of Dilanthanide Single-Molecule-Magnet Nodes within a Metal-Organic Framework. , 2015, Angewandte Chemie.

[28]  Xuan Zhang,et al.  Metal-Organic Frameworks as Platforms for the Controlled Nanostructuring of Single-Molecule Magnets. , 2015, Journal of the American Chemical Society.

[29]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[30]  M. Kanatzidis,et al.  Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides , 2014 .

[31]  D. D’Alessandro,et al.  Controlling charge separation in a novel donor–acceptor metal–organic framework via redox modulation , 2014 .

[32]  D. Mariolle,et al.  Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption , 2014 .

[33]  W. Shen,et al.  A new type of charge-transfer salts based on tetrathiafulvalene-tetracarboxylate coordination polymers and methyl viologen. , 2014, Inorganic chemistry.

[34]  T. Roisnel,et al.  Redox modulation of magnetic slow relaxation in a 4f-based single-molecule magnet with a 4d carbon-rich ligand. , 2014, Inorganic chemistry.

[35]  Jesse G. Park,et al.  An azophenine radical-bridged Fe2 single-molecule magnet with record magnetic exchange coupling. , 2013, Journal of the American Chemical Society.

[36]  L. Chibotaru,et al.  A dinuclear cobalt complex featuring unprecedented anodic and cathodic redox switches for single-molecule magnet activity. , 2013, Journal of the American Chemical Society.

[37]  M. Jennings,et al.  Fine-tuning the single-molecule magnet properties of a [Dy(III)-radical]2 pair. , 2013, Journal of the American Chemical Society.

[38]  Joseph M. Zadrozny,et al.  Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. , 2012, Journal of the American Chemical Society.

[39]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[40]  J. Long,et al.  A redox-switchable single-molecule magnet incorporating [Re(CN)7]3-. , 2008, Journal of the American Chemical Society.

[41]  Bo Zhang,et al.  Tetrathiafulvalene [FeIII(C2O4)Cl2]: An Organic–Inorganic Hybrid Exhibiting Canted Antiferromagnetism , 2005 .

[42]  E. Coronado,et al.  Magnetic molecular conductors. , 2004, Chemical reviews.

[43]  L. Kloo,et al.  Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. , 2003, Chemical reviews.

[44]  Anthony L. Spek,et al.  Journal of , 1993 .

[45]  Y Okano,et al.  A three-dimensional synthetic metallic crystal composed of single-component molecules. , 2001, Science.

[46]  P. Day Coordination complexes in two dimensional magnets and superconductors , 1999 .

[47]  E. Coronado,et al.  Increasing the Coercivity in Layered Molecular‐based Magnets A[MIIMIII(ox)3] (MII = Mn, Fe, Co, Ni, Cu; MIII = Cr, Fe; ox = oxalate; A = organic or organometallic cation) , 1999 .