A fractional step θ-method for viscoelastic fluid flow using a SUPG approximation

In this article a fractional step θ-method is described and studied for the approximation of time dependent viscoelastic fluid flow equations, using the Johnson-Segalman constitutive model. The θ-method implementation allows the velocity and pressure approximations to be decoupled from the stress, reducing the number of unknowns resolved at each step of the method. The constitutive equation is stabilized using a Streamline Upwinded Petrov-Galerkin (SUPG)-method. A priori error estimates are given for the approximation scheme. Numerical computations supporting the theoretical results and demonstrating the θ-method are also presented.

[1]  V. Ervin,et al.  A fractional step ?-method for convectiondiffusion problems , 2007 .

[2]  Jacques Baranger,et al.  Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method , 1997 .

[3]  P. Kloucek,et al.  Stability of the fractional step T-scheme for the nonstationary Navier-Stokes equations , 1994 .

[4]  Marcel Crochet,et al.  Hermitian Finite-elements for Calculating Viscoelastic Flow , 1986 .

[5]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[6]  M. Crochet,et al.  A new mixed finite element for calculating viscoelastic flow , 1987 .

[7]  Marco Dressler,et al.  Computational Rheology , 2002 .

[8]  J. Périaux,et al.  Numerical methods for nonlinear problem in fluid dynamics , 1987 .

[9]  S. Turek Efficient solvers for incompressible flow problems: An algorithmic approach . . , 1998 .

[10]  穆君,et al.  NUMERICAL ANALYSIS OF A FEM FOR A TRANSIENT VISCOELASTIC FLOW , 2004 .

[11]  S. Turek a Comparative Study of Time-Stepping Techniques for the Incompressible Navier-Stokes Equations: from Fully Implicit Non-Linear Schemes to Semi-Implicit Projection Methods , 1996 .

[12]  E. Fernández-Cara,et al.  Mathematical Modeling and Analysis of Viscoelastic Fluids of the Oldroyd Kind , 2002 .

[13]  Vincent J. Ervin,et al.  Approximation of Time-Dependent Viscoelastic Fluid Flow: SUPG Approximation , 2003, SIAM J. Numer. Anal..

[14]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Fluid mechanics , 1987 .

[15]  Michael Renardy,et al.  Mathematical Analysis of Viscoelastic Flows , 1987 .

[16]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[17]  Norbert Heuer,et al.  Approximation of time‐dependent, viscoelastic fluid flow: Crank‐Nicolson, finite element approximation , 2004 .

[18]  T. Phillips,et al.  Viscoelastic flow through a planar contraction using a semi-Lagrangian finite volume method , 1999 .

[19]  P. Saramito,et al.  Efficient simulation of nonlinear viscoelastic fluid flows , 1995 .

[20]  Robert C. Armstrong,et al.  Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations , 1999 .

[21]  Dominique Sandri Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds: continuous approximation of the stress , 1994 .

[22]  Mohamed Bensaada,et al.  Error estimates for a stabilized finite element method for the Oldroyd B model , 2007 .

[23]  Jacques Baranger,et al.  Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds , 1992 .