Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina.
暂无分享,去创建一个
J. Verweij | D. Dacey | B. Peterson | S. Buck | J Verweij | D. M Dacey | B. B Peterson | S. L Buck
[1] Barry B. Lee,et al. Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.
[2] H. Kolb,et al. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[3] S. Hecht,et al. THE VISUAL FUNCTIONS OF THE COMPLETE COLORBLIND , 1948, The Journal of general physiology.
[4] D. Baylor,et al. Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.
[5] J. L. Schnapf,et al. Photovoltage of rods and cones in the macaque retina. , 1995, Science.
[6] W. A. van de Grind,et al. Horizontal cell sensitivity in the cat retina during prolonged dark adaptation , 1996, Visual Neuroscience.
[7] R. H. Steinberg. The rod after-effect in S-potentials from the cat retina. , 1969, Vision research.
[8] R. Dacheux,et al. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[9] H. Kolb,et al. A17: a broad-field amacrine cell in the rod system of the cat retina. , 1985, Journal of neurophysiology.
[10] H. Wässle,et al. Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.
[11] Arne Valberg,et al. From Pigments to Perception , 1991, NATO ASI Series.
[12] P Gouras,et al. Horizontal cells in cat retina with independent dendritic systems. , 1975, Science.
[13] W A Rushton,et al. Dark adaptation and increment threshold in a rod monochromat. , 1965, The Journal of physiology.
[14] C. Enroth-Cugell,et al. Chapter 9 Visual adaptation and retinal gain controls , 1984 .
[15] Helga Kolb,et al. A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.
[16] D. Dacey,et al. Physiology of the A1 amacrine: A spiking, axon-bearing interneuron of the macaque monkey retina , 1997, Visual Neuroscience.
[17] E. Raviola,et al. Gap junctions between photoreceptor cells in the vertebrate retina. , 1973, Proceedings of the National Academy of Sciences of the United States of America.
[18] D. Hood,et al. Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.
[19] R. Hess,et al. Spatial and temporal limits of vision in the achromat. , 1986, The Journal of physiology.
[20] A. Stockman,et al. Dual Rod Pathways , 1991 .
[21] J D Conner,et al. The temporal properties of rod vision. , 1982, The Journal of physiology.
[22] Donald I. A. MacLeod,et al. Rod flicker perception: Scotopic duality, phase lags and destructive interference , 1989, Vision Research.
[23] R. H. Steinberg,et al. Rod and cone contributions to S-potentials from the cat retina. , 1969, Vision research.
[24] R. H. Steinberg. Rod-cone interaction in S-potentials from the cat retina. , 1969, Vision research.
[25] H. Barlow,et al. Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.
[26] Barry B. Lee,et al. The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.
[27] C. Taylor,et al. Improved mountant for immunofluorescence preparations. , 1974, Journal of clinical pathology.
[28] W. A. van de Grind,et al. Spatial and temporal properties of cat horizontal cells after prolonged dark adaptation , 1996, Vision Research.
[29] A. Stockman,et al. Two signals in the human rod visual system: A model based on electrophysiological data , 1995, Visual Neuroscience.
[30] E. Strettoi,et al. Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.
[31] D. Macleod,et al. Rod photoreceptors detect rapid flicker. , 1977, Science.
[32] H. Spekreijse,et al. Interaction between the soma and the axon terminal of horizontal cells in carp retina , 1990, Vision Research.
[33] R. Nelson,et al. AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.
[34] R. Nelson,et al. Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat , 1977, The Journal of comparative neurology.
[35] D. Baylor,et al. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.
[36] Helga Kolb,et al. Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.
[37] P Sterling,et al. Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[38] E. Strettoi,et al. Cone bipolar cells as interneurons in the rod, pathway of the rabbit retina , 1994, The Journal of comparative neurology.
[39] J. Robson,et al. Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram , 1995, Visual Neuroscience.