Spin and Orbital Symmetry Breakings Central to the Laser-Induced Ultrafast Demagnetization of Transition Metals

The role of spin and orbital rotational symmetry on the laser-induced magnetization dynamics of itinerant-electron ferromagnets was theoretically investigated. The ultrafast demagnetization of transition metals is shown to be the direct consequence of the fundamental breaking of these conservation laws in the electronic system, an effect that is inherent to the nature of spin-orbit and electron-lattice interactions. A comprehensive symmetry analysis is complemented by exact numerical calculations of the time evolution of optically excited ferromagnetic ground states in the framework of a many-body electronic Hamiltonian. Thus, quantitative relations are established between the strength of the interactions that break the rotational symmetries and the time scales that are relevant for the magnetization dynamics.

[1]  G. Pastor,et al.  Tuning the laser-induced ultrafast demagnetization of transition metals , 2019, Physical Review B.

[2]  M. Murnane,et al.  Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel , 2018, Science Advances.

[3]  J. K. Dewhurst,et al.  Laser-Induced Intersite Spin Transfer. , 2018, Nano letters.

[4]  M. Murnane,et al.  Revealing the Nature of the Ultrafast Magnetic Phase Transition in Ni by Correlating Extreme Ultraviolet Magneto-Optic and Photoemission Spectroscopies. , 2017, Physical review letters.

[5]  J. Bigot,et al.  Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals. , 2017, Physical review letters.

[6]  M. Murnane,et al.  Stoner versus Heisenberg: Ultrafast exchange reduction and magnon generation during laser-induced demagnetization , 2016 .

[7]  S. Mangin,et al.  Hot-Electron-Induced Ultrafast Demagnetization in Co/Pt Multilayers. , 2016, Physical review letters.

[8]  S. Carron,et al.  Indirect excitation of ultrafast demagnetization , 2016, Scientific Reports.

[9]  E K U Gross,et al.  Laser-induced demagnetization at ultrashort time scales: predictions of TDDFT. , 2015, Journal of chemical theory and computation.

[10]  G. Pastor,et al.  Many-Body Theory of Ultrafast Demagnetization and Angular Momentum Transfer in Ferromagnetic Transition Metals. , 2015, Physical review letters.

[11]  G. Pastor,et al.  Noncollinear spin-fluctuation theory of transition-metal magnetism: Role of transverse spin fluctuations in Fe , 2015 .

[12]  A. Föhlisch,et al.  Ultrafast spin transport as key to femtosecond demagnetization. , 2013, Nature materials.

[13]  M. Battiato,et al.  Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures , 2012 .

[14]  M. Fähnle,et al.  Electron theory of fast and ultrafast dissipative magnetization dynamics , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  M. Battiato,et al.  Ab Initio investigation of the Elliott-Yafet electron-phonon mechanism in laser-induced ultrafast demagnetization. , 2011, Physical review letters.

[16]  M. Battiato,et al.  Superdiffusive spin transport as a mechanism of ultrafast demagnetization. , 2010, Physical review letters.

[17]  J. Bigot,et al.  Distinguishing the ultrafast dynamics of spin and orbital moments in solids , 2010, Nature.

[18]  D. Steiauf,et al.  Extension of Yafet's theory of spin relaxation to ferromagnets , 2010 .

[19]  M. Cinchetti,et al.  Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. , 2010, Nature materials.

[20]  H. A. Durr,et al.  Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization , 2010, 1002.1656.

[21]  M. Cinchetti,et al.  Ultrafast demagnetization of ferromagnetic transition metals: The role of the Coulomb interaction , 2009, 0906.5104.

[22]  W. Eberhardt,et al.  Femtosecond modification of electron localization and transfer of angular momentum in nickel. , 2007, Nature materials.

[23]  B. Koopmans,et al.  Microscopic model for femtosecond magnetization dynamics , 2005 .

[24]  H. Dürr,et al.  Femtosecond electron and spin dynamics in Ni/W(110) films. , 2003, Physical review letters.

[25]  R. Guirado-López,et al.  Orbital magnetism in transition-metal clusters: from Hund's rules to bulk quenching. , 2003, Physical review letters.

[26]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[27]  Falicov,et al.  Exact solution of a four-site d-electron problem: The nickel-metal photoemission spectrum. , 1985, Physical review letters.

[28]  L. Feldkamp,et al.  X-ray photoemission spectra of core levels in Ni metal , 1980 .

[29]  H. Hasegawa Single-Site Spin Fluctuation Theory of Itinerant-Electron Systems with Narrow Bands. II. Iron and Nickel , 1980 .

[30]  H. Hasegawa Single-Siet Spin Fluctuation Theory of Itinerant-Electron Systems with Narrow Bands , 1980 .

[31]  W. Eberhardt,et al.  Angle-resolved photoemission determination of the band structure and multielectron excitations in Ni , 1980 .

[32]  J. Hubbard Magnetism of iron. II , 1979 .

[33]  J. Hubbard The magnetism of iron , 1979 .

[34]  S. Hüfner,et al.  Multielectron effects in the XPS spectra of nickel , 1975 .

[35]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[36]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .