Solar cell efficiency tables (version 52)

Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since January 2018 are reviewed.

[1]  Gerald Siefer,et al.  43% Sunlight to Electricity Conversion Efficiency Using CPV , 2016, IEEE Journal of Photovoltaics.

[2]  Martin A. Green,et al.  Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn1–xCdxS Buffer Layer , 2016 .

[3]  A. Jäger-Waldau R&D Roadmap for PV. , 2004 .

[4]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[5]  D. C. Law,et al.  35.8% space and 38.8% terrestrial 5J direct bonded cells , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[6]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[7]  Stephen R. Forrest,et al.  High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency , 2018 .

[8]  K. Emery,et al.  Improvements in Sunlight to Electricity Conversion Efficiency: above 40% for Direct Sunlight and over 30% for Global , 2015 .

[9]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[10]  Linlin Yang,et al.  New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[11]  Sven Wanka,et al.  New module design with 4-junction solar cells for high efficiencies , 2015 .

[12]  Jan Benick,et al.  High-Efficiency n-Type HP mc Silicon Solar Cells , 2017, IEEE Journal of Photovoltaics.

[13]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[14]  M. Steiner,et al.  High-efficiency inverted metamorphic 1.7/1.1 eV GaInAsP/GaInAs dual-junction solar cells , 2018 .

[15]  B. Mereu,et al.  Improved conversion efficiencies of thin-film silicon tandem (MICROMORPH™) photovoltaic modules , 2016 .

[16]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[17]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[18]  M. Kondo,et al.  High-efficiency amorphous silicon solar cells: Impact of deposition rate on metastability , 2015 .

[19]  Frederik C. Krebs,et al.  Stability and Degradation of Organic and Polymer Solar Cells: Krebs/Stability and Degradation of Organic and Polymer Solar Cells , 2012 .

[20]  M. Topič,et al.  Ageing of DSSC studied by electroluminescence and transmission imaging , 2013 .

[21]  Kelsey A. W. Horowitz,et al.  Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions , 2017, Nature Energy.

[22]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[23]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[24]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[25]  M. Green,et al.  40% efficient sunlight to electricity conversion , 2015 .

[26]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[27]  H. Sugimoto High efficiency and large volume production of CIS-based modules , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[28]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[29]  M. Hosoya,et al.  Module Development for Organic Thin-Film Photovoltaics , 2013 .

[30]  I. Sakata,et al.  Japan's New National R&D Program for Photovoltaics , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[31]  R. Adams Proceedings , 1947 .

[32]  R. Brendel,et al.  Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells , 2018, Solar Energy Materials and Solar Cells.

[33]  Y. Takeuchi,et al.  High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition , 2015 .

[34]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[35]  Naomi Shida,et al.  Organic photovoltaic module development with inverted device structure , 2015 .

[36]  Suren A. Gevorgyan,et al.  The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices , 2012 .

[37]  Yang Yang,et al.  Make perovskite solar cells stable , 2017, Nature.

[38]  A Jaeger Waldau,et al.  PVNET: European Roadmap for PV R&D. R&D for PV Products Generating Clean Electricity. , 2004 .

[39]  Y. Takeuchi,et al.  Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6% , 2015 .

[40]  M. Green,et al.  Solar cell efficiency tables (version 51) , 2018 .

[41]  Tatsuya Takamoto,et al.  Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[42]  Rommel Noufi,et al.  A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .

[43]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.