Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this “number sense”, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or to an orthogonal dimension (average item size) of visual dot arrays. Numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was progressively enhanced along the dorsal visual pathway and was selectively amplified by attention when task relevant. These results reveal a dedicated extraction mechanism for numerosity that operates independently of other quantitative dimensions of the stimuli, and suggest that later stages along the dorsal stream are most important for the explicit manipulation of numerical quantity.

[1]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[2]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[3]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[4]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[5]  Ariel Starr,et al.  The contributions of numerical acuity and non-numerical stimulus features to the development of the number sense and symbolic math achievement , 2017, Cognition.

[6]  James V. Haxby,et al.  CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave , 2016, bioRxiv.

[7]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[8]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[9]  Robert W. Kentridge,et al.  Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia. , 2010, Cerebral cortex.

[10]  Daniel Ansari,et al.  How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior , 2013, Trends in Neuroscience and Education.

[11]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[12]  Marco Zorzi,et al.  Emergence of a 'visual number sense' in hierarchical generative models , 2012, Nature Neuroscience.

[13]  Pierre Pica,et al.  Education Enhances the Acuity of the Nonverbal Approximate Number System , 2013, Psychological science.

[14]  Elizabeth M. Brannon,et al.  Modeling the approximate number system to quantify the contribution of visual stimulus features , 2015, Cognition.

[15]  David C. Burr,et al.  Effects of adaptation on numerosity decoding in the human brain , 2016, NeuroImage.

[16]  F. Kingdom,et al.  A common visual metric for approximate number and density , 2011, Proceedings of the National Academy of Sciences.

[17]  Bert De Smedt,et al.  Visual Number Beats Abstract Numerical Magnitude: Format-dependent Representation of Arabic Digits and Dot Patterns in Human Parietal Cortex , 2015, Journal of Cognitive Neuroscience.

[18]  Qixuan Chen,et al.  Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. , 2014, Acta psychologica.

[19]  A. Henik,et al.  The contribution of fish studies to the “number sense” debate , 2016, Behavioral and Brain Sciences.

[20]  Amy Devine,et al.  Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆ , 2013, Cortex.

[21]  Philippe Pinel,et al.  Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments , 2004, Neuron.

[22]  Guido Marco Cicchini,et al.  Number As a Primary Perceptual Attribute: A Review , 2016, Perception.

[23]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[24]  J. Bulthé,et al.  Format-dependent representations of symbolic and non-symbolic numbers in the human cortex as revealed by multi-voxel pattern analyses , 2014, NeuroImage.

[25]  Bert Reynvoet,et al.  The interplay between nonsymbolic number and its continuous visual properties. , 2012, Journal of experimental psychology. General.

[26]  Justin Halberda,et al.  Is Approximate Number Precision a Stable Predictor of Math Ability? , 2013, Learning and individual differences.

[27]  Janneke F. M. Jehee,et al.  Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex , 2011, The Journal of Neuroscience.

[28]  Michele Fornaciai,et al.  Distinct Neural Signatures for Very Small and Very Large Numerosities , 2017, Front. Hum. Neurosci..

[29]  Manuela Piazza,et al.  Neurocognitive start-up tools for symbolic number representations , 2010, Trends in Cognitive Sciences.

[30]  Elizabeth M. Brannon,et al.  Numerical encoding in early visual cortex , 2019, Cortex.

[31]  Alexandre Vignaud,et al.  Mapping numerical perception and operations in relation to functional and anatomical landmarks of human parietal cortex , 2019, bioRxiv.

[32]  S. Dehaene,et al.  Asymmetrical interference between number and item size perception provides evidence for a domain specific impairment in dyscalculia , 2018, bioRxiv.

[33]  Tali Leibovich,et al.  Asymmetric Processing of Numerical and Nonnumerical Magnitudes in the Brain: An fMRI Study , 2016, Journal of Cognitive Neuroscience.

[34]  Edward Awh,et al.  Feature-Selective Attentional Modulations in Human Frontoparietal Cortex , 2016, The Journal of Neuroscience.

[35]  Jessica F Cantlon,et al.  Math, monkeys, and the developing brain , 2012, Proceedings of the National Academy of Sciences.

[36]  Stanislas Dehaene,et al.  Distinct Cerebral Pathways for Object Identity and Number in Human Infants , 2008, PLoS biology.

[37]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[38]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[39]  S Dehaene,et al.  Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. , 2015, Cerebral cortex.

[40]  Stanislas Dehaene,et al.  Discriminability of numerosity-evoked fMRI activity patterns in human intra-parietal cortex reflects behavioral numerical acuity , 2017, Cortex.

[41]  Andrea Facoetti,et al.  Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia , 2010, Cognition.

[42]  D. Burr,et al.  Vision senses number directly. , 2009, Journal of vision.

[43]  Jonathan S. Cant,et al.  Object Ensemble Processing in Human Anterior-Medial Ventral Visual Cortex , 2012, The Journal of Neuroscience.

[44]  David J. Freedman,et al.  Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex , 2014, Neuron.

[45]  Melissa E. Libertus,et al.  Preschool acuity of the approximate number system correlates with school math ability. , 2011, Developmental science.

[46]  Hee Yeon Im,et al.  The effects of sampling and internal noise on the representation of ensemble average size , 2012, Attention, Perception, & Psychophysics.

[47]  A. Nieder The neuronal code for number , 2016, Nature Reviews Neuroscience.

[48]  Curren Katz,et al.  Dissociating estimation from comparison and response eliminates parietal involvement in sequential numerosity perception , 2015, NeuroImage.

[49]  David J. Freedman,et al.  Distinct Encoding of Spatial and Nonspatial Visual Information in Parietal Cortex , 2009, The Journal of Neuroscience.

[50]  Broeke Guus A. ten,et al.  Effects of adaptation. , 2017 .

[51]  D. Burr,et al.  A shared numerical representation for action and perception , 2016, eLife.

[52]  Manuela Piazza,et al.  Processing number and length in the parietal cortex: Sharing resources, not a common code , 2019, Cortex.

[53]  Serge O. Dumoulin,et al.  Can responses to basic non-numerical visual features explain neural numerosity responses? , 2017, NeuroImage.

[54]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[55]  Seda Cavdaroglu,et al.  Evidence for a Posterior Parietal Cortex Contribution to Spatial but not Temporal Numerosity Perception. , 2018, Cerebral cortex.

[56]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  W. Fias Neurocognitive Components of Mathematical Skills and Dyscalculia , 2016 .

[58]  David C. Burr,et al.  Separate Mechanisms for Perception of Numerosity and Density , 2014, Psychological science.

[59]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[60]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[61]  David J. Freedman,et al.  Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex , 2002, Science.

[62]  Ryan E. B. Mruczek,et al.  A brief comparative review of primate posterior parietal cortex: A novel hypothesis on the human toolmaker , 2017, Neuropsychologia.

[63]  Elizabeth M. Brannon,et al.  Numerosity processing in early visual cortex , 2017, NeuroImage.

[64]  Joonkoo Park,et al.  Rapid and Direct Encoding of Numerosity in the Visual Stream. , 2015, Cerebral cortex.

[65]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.

[66]  Guido Marco Cicchini,et al.  Mechanisms for perception of numerosity or texture-density are governed by crowding-like effects. , 2015, Journal of vision.

[67]  Felix A. Wichmann,et al.  Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data , 2016, Vision Research.

[68]  Justin Halberda,et al.  Individual differences in non-verbal number acuity correlate with maths achievement , 2008, Nature.

[69]  David C. Burr,et al.  Linear mapping of numbers onto space requires attention , 2012, Cognition.

[70]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[71]  S. Dumoulin,et al.  Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex , 2015, Proceedings of the National Academy of Sciences.

[72]  Lawrence L. Wald,et al.  Design considerations and coil comparisons for 7 T brain imaging , 2005 .

[73]  Margot J. Taylor,et al.  Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations , 2011, NeuroImage.

[74]  D. C. Burr,et al.  Adaptation to number operates on perceived rather than physical numerosity , 2016, Cognition.

[75]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[76]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[77]  Wim Fias,et al.  Representation of Number in Animals and Humans: A Neural Model , 2004, Journal of Cognitive Neuroscience.

[78]  E. Brannon,et al.  Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area , 2007, PLoS biology.

[79]  Elisa Castaldi,et al.  Numerosity but not texture-density discrimination correlates with math ability in children. , 2016, Developmental psychology.

[80]  S. Dehaene,et al.  The Number Sense: How the Mind Creates Mathematics. , 1998 .

[81]  Manuela Piazza,et al.  Neural foundations and functional specificity of number representations , 2016, Neuropsychologia.

[82]  P. Viswanathan,et al.  Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons , 2015, Current Biology.

[83]  Gavin R. Price,et al.  Dyscalculia and Typical Math Achievement Are Associated With Individual Differences in Number-Specific Executive Function. , 2018, Child development.

[84]  Jacqueline Leybaert,et al.  Does math education modify the approximate number system? A comparison of schooled and unschooled adults , 2013, Trends in Neuroscience and Education.

[85]  Michele Fornaciai,et al.  Early Numerosity Encoding in Visual Cortex Is Not Sufficient for the Representation of Numerical Magnitude , 2018, Journal of Cognitive Neuroscience.

[86]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[87]  V. Menon,et al.  Development of Mathematical Reasoning , 2018 .

[88]  E. Eger,et al.  Neuronal foundations of human numerical representations. , 2016, Progress in brain research.

[89]  Steven C. Dakin,et al.  A texture-processing model of the ‘visual sense of number’ , 2014, Proceedings of the Royal Society B: Biological Sciences.

[90]  Elizabeth S Spelke,et al.  Neural signatures of number processing in human infants: evidence for two core systems underlying numerical cognition. , 2011, Developmental science.

[91]  Tali Leibovich,et al.  Numerosity processing is context driven even in the subitizing range: An fMRI study , 2015, Neuropsychologia.

[92]  Elisa Castaldi,et al.  Perceiving numerosity from birth , 2017, Behavioral and Brain Sciences.

[93]  Daniel Ansari,et al.  Probing the nature of deficits in the 'Approximate Number System' in children with persistent Developmental Dyscalculia. , 2016, Developmental science.

[94]  Guy A. Orban,et al.  Comparing Parietal Quantity-Processing Mechanisms between Humans and Macaques , 2017, Trends in Cognitive Sciences.

[95]  Valérie Dormal,et al.  Common and Specific Contributions of the Intraparietal Sulci to Numerosity and Length Processing , 2009, NeuroImage.

[96]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[97]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[98]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[99]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[100]  D. Ansari,et al.  Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis , 2017, Neuropsychologia.

[101]  Matthew Inglis,et al.  Indexing the approximate number system. , 2014, Acta psychologica.

[102]  Z Kourtzi,et al.  fMRI Adaptation: A Technique for Studying Visual Representations in the Primate Brain , 2005 .

[103]  S. Dumoulin,et al.  A network of topographic numerosity maps in human association cortex , 2016, Nature Human Behaviour.

[104]  W. Gevers,et al.  Topographic representation of high-level cognition: numerosity or sensory processing? , 2014, Trends in Cognitive Sciences.

[105]  Stefano Panzeri,et al.  Learning to focus on number , 2018, Cognition.

[106]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[107]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[108]  Guido Marco Cicchini,et al.  Spontaneous perception of numerosity in humans , 2016, Nature Communications.

[109]  Panagiotis Sapountzis,et al.  Distinct roles of prefrontal and parietal areas in the encoding of attentional priority , 2018, Proceedings of the National Academy of Sciences.

[110]  Bertrand Thirion,et al.  Deciphering Cortical Number Coding from Human Brain Activity Patterns , 2009, Current Biology.

[111]  Justin L. Gardner,et al.  Feature-Specific Attentional Priority Signals in Human Cortex , 2011, The Journal of Neuroscience.

[112]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[113]  Justin Halberda,et al.  Developmental change in the acuity of the "Number Sense": The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. , 2008, Developmental psychology.

[114]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[115]  D. Burr,et al.  A Visual Sense of Number , 2007, Current Biology.

[116]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[117]  Roberto Arrighi,et al.  Spatial but Not Temporal Numerosity Thresholds Correlate With Formal Math Skills in Children , 2017, Developmental psychology.