A decentralised neural model explaining optimal integration of navigational strategies in insects

Insect navigation arises from the coordinated action of concurrent guidance systems but the neural mechanisms through which each functions, and are then coordinated, remains unknown. We propose that insects require distinct strategies to retrace familiar routes (route-following) and directly return from novel to familiar terrain (homing) using different aspects of frequency encoded views that are processed in different neural pathways. We also demonstrate how the Central Complex and Mushroom Bodies regions of the insect brain may work in tandem to coordinate the directional output of different guidance cues through a contextually switched ring-attractor inspired by neural recordings. The resultant unified model of insect navigation reproduces behavioural data from a series of cue conflict experiments in realistic animal environments and offers testable hypotheses of where and how insects process visual cues, utilise the different information that they provide and coordinate their outputs to achieve the adaptive behaviours observed in the wild.

[1]  Stanley Heinze,et al.  Editorial: The Insect Central Complex—From Sensory Coding to Directing Movement , 2018, Front. Behav. Neurosci..

[2]  Thomas S. Collett,et al.  How does the insect central complex use mushroom body output for steering? , 2018, Current Biology.

[3]  Rüdiger Wehner,et al.  Nest-mark orientation versus vector navigation in desert ants , 2008, Journal of Experimental Biology.

[4]  T. Hummel,et al.  Parallel Visual Pathways with Topographic versus Nontopographic Organization Connect the Drosophila Eyes to the Central Brain , 2020, bioRxiv.

[5]  Stanley Heinze,et al.  Unraveling the neural basis of insect navigation. , 2017, Current opinion in insect science.

[6]  Holk Cruse,et al.  No Need for a Cognitive Map: Decentralized Memory for Insect Navigation , 2011, PLoS Comput. Biol..

[7]  Barbara Webb,et al.  From skylight input to behavioural output: A computational model of the insect polarised light compass , 2018, bioRxiv.

[8]  Andrew Philippides,et al.  What is the relationship between visual environment and the form of ant learning-walks? An in silico investigation of insect navigation , 2014, Adapt. Behav..

[9]  A. C. James,et al.  Characterisation of columnar neurons and visual signal processing in the medulla of the locust optic lobe by system identification techniques , 1996, Journal of Comparative Physiology A.

[10]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[11]  Sung Soo Kim,et al.  Generation of stable heading representations in diverse visual scenes , 2019, Nature.

[12]  David O'Carroll,et al.  Feature-detecting neurons in dragonflies , 1993, Nature.

[13]  G. Horridge,et al.  Pattern discrimination by the honeybee: disruption as a cue , 1997, Journal of Comparative Physiology A.

[14]  Uwe Homberg,et al.  Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria , 2003, The Journal of comparative neurology.

[15]  Rachel I. Wilson,et al.  Sensorimotor experience remaps visual input to a heading-direction network , 2019, Nature.

[16]  R. Wehner,et al.  Navigation in wood ants Formica japonica: context dependent use of landmarks , 2004, Journal of Experimental Biology.

[17]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[18]  Ajay Narendra,et al.  Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information , 2007, Journal of Experimental Biology.

[19]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[20]  Anna Honkanen,et al.  The insect central complex and the neural basis of navigational strategies , 2019, Journal of Experimental Biology.

[21]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[22]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[23]  W. Gronenberg,et al.  Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera) , 2002, The Journal of comparative neurology.

[24]  Michael D. Breed,et al.  Effects of experience on use of orientation cues in the giant tropical ant , 1989, Animal Behaviour.

[25]  Stanley Heinze,et al.  Linking the Input to the Output: New Sets of Neurons Complement the Polarization Vision Network in the Locust Central Complex , 2009, The Journal of Neuroscience.

[26]  Marie Dacke,et al.  Multimodal cue integration in the dung beetle compass , 2019, Proceedings of the National Academy of Sciences.

[27]  Emanuele Menegatti,et al.  Image-based memory for robot navigation using properties of omnidirectional images , 2004, Robotics Auton. Syst..

[28]  C. Giovanni Galizia,et al.  Different Roles for Honey Bee Mushroom Bodies and Central Complex in Visual Learning of Colored Lights in an Aversive Conditioning Assay , 2017, Front. Behav. Neurosci..

[29]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[30]  B. Webb,et al.  Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox) , 2012 .

[31]  Vivek Jayaraman,et al.  Building a functional connectome of the Drosophila central complex , 2018, eLife.

[32]  Jeffrey S. Taube,et al.  Head direction cells and the neural mechanisms of spatial orientation , 2005 .

[33]  Michael Mangan,et al.  An Analysis of a Ring Attractor Model for Cue Integration , 2018, Living Machines.

[34]  Benjamin L. de Bivort,et al.  Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge , 2016, bioRxiv.

[35]  Barbara Webb,et al.  Rotation invariant visual processing for spatial memory in insects , 2018, Interface Focus.

[36]  Kei Ito,et al.  A Connectome of the Adult Drosophila Central Brain , 2020, bioRxiv.

[37]  Zeil,et al.  Structure and function of learning flights in ground-nesting bees and wasps , 1996, The Journal of experimental biology.

[38]  M Heisenberg,et al.  Vision affects mushroom bodies and central complex in Drosophila melanogaster. , 1997, Learning & memory.

[39]  Václav Hlavác,et al.  Zero Phase Representation of Panoramic Images for Image Vased Localization , 1999, CAIP.

[40]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[41]  M. Teague Image analysis via the general theory of moments , 1980 .

[42]  Jochen Zeil,et al.  Catchment areas of panoramic snapshots in outdoor scenes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[43]  T. Collett,et al.  Spatial Memory in Insect Navigation , 2013, Current Biology.

[44]  Allen Cheung,et al.  Principles of Insect Path Integration , 2018, Current Biology.

[45]  Paul Graham,et al.  Connecting brain to behaviour: a role for general purpose steering circuits in insect orientation? , 2020, Journal of Experimental Biology.

[46]  W. Gronenberg,et al.  Mushroom body volumes and visual interneurons in ants: Comparison between sexes and castes , 2004, The Journal of comparative neurology.

[47]  T. Collett,et al.  Insect navigation en route to the goal: multiple strategies for the use of landmarks , 1996, The Journal of experimental biology.

[48]  Antoine Wystrach,et al.  Landmarks or panoramas: what do navigating ants attend to for guidance? , 2011, Frontiers in Zoology.

[49]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[50]  R. Menzel,et al.  Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe , 1993, The Journal of comparative neurology.

[51]  B. Webb,et al.  An Anatomically Constrained Model for Path Integration in the Bee Brain , 2017, Current Biology.

[52]  R. Wehner,et al.  Path Integration Provides a Scaffold for Landmark Learning in Desert Ants , 2010, Current Biology.

[53]  J. Zeil,et al.  The learning walks of ants (Hymenoptera: Formicidae) , 2019 .

[54]  Tim Landgraf,et al.  A neural network model for familiarity and context learning during honeybee foraging flights , 2017, Biological Cybernetics.

[55]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[56]  Andrew Philippides,et al.  A Model of Ant Route Navigation Driven by Scene Familiarity , 2012, PLoS Comput. Biol..

[57]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[58]  Steven M Reppert,et al.  Neurobiology of Monarch Butterfly Migration. , 2016, Annual review of entomology.

[59]  Alain Léger,et al.  JPEG-1 standard 25 years: past, present, and future reasons for a success , 2018, J. Electronic Imaging.

[60]  Thierry Hoinville,et al.  Learning and Retrieval of Memory Elements in a Navigation Task , 2012, Living Machines.

[61]  R. Wehner The architecture of the desert ant's navigational toolkit (Hymenoptera: Formicidae) , 2009 .

[62]  Hanspeter A. Mallot,et al.  Efficient visual homing based on Fourier transformed panoramic images , 2006, Robotics Auton. Syst..

[63]  B. Webb,et al.  Optimal cue integration in ants , 2015, Proceedings of the Royal Society B: Biological Sciences.

[64]  M. Collett How Navigational Guidance Systems Are Combined in a Desert Ant , 2012, Current Biology.

[65]  Antoine Wystrach,et al.  Ants might use different view-matching strategies on and off the route , 2012, Journal of Experimental Biology.

[66]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[67]  Michael Milford,et al.  Skyline-based localisation for aggressively manoeuvring robots using UV sensors and spherical harmonics , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[68]  Thomas S Collett,et al.  Path integration: how details of the honeybee waggle dance and the foraging strategies of desert ants might help in understanding its mechanisms , 2019, Journal of Experimental Biology.

[69]  Fei Peng,et al.  Using an Insect Mushroom Body Circuit to Encode Route Memory in Complex Natural Environments , 2016, PLoS Comput. Biol..

[70]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[71]  Thierry Hoinville,et al.  Optimal multiguidance integration in insect navigation , 2018, Proceedings of the National Academy of Sciences.

[72]  J. Zeil,et al.  How Wasps Acquire and Use Views for Homing , 2016, Current Biology.

[73]  B. Webb,et al.  The head direction circuit of two insect species , 2019, bioRxiv.

[74]  Rüdiger Wehner,et al.  Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis , 2016, Journal of Experimental Biology.

[75]  Rüdiger Wehner,et al.  Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors? , 2005, Neurobiology of Learning and Memory.

[76]  A. Philippides,et al.  Animal Cognition: Multi-modal Interactions in Ant Learning , 2010, Current Biology.

[77]  J. Zeil Visual homing: an insect perspective , 2012, Current Opinion in Neurobiology.

[78]  W. Gronenberg,et al.  Multisensory Convergence in the Mushroom Bodies of Ants and Bees , 2004, Acta biologica Hungarica.

[79]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[80]  Stanley Heinze,et al.  Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria , 2015, The Journal of comparative neurology.

[82]  B. Webb,et al.  How Ants Use Vision When Homing Backward , 2017, Current Biology.

[83]  Alex J. Cope,et al.  A computational model of the integration of landmarks and motion in the insect central complex , 2017, PloS one.

[84]  James J. Foster,et al.  A Snapshot-Based Mechanism for Celestial Orientation , 2016, Current Biology.

[85]  Davi Bock,et al.  The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor , 2019, Neuron.

[86]  Marcia L. Spetch,et al.  Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues , 2014, Journal of Experimental Biology.

[87]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[88]  W. Rössler,et al.  Distributed plasticity in ant visual pathways following colour learning , 2019, Proceedings of the Royal Society B.

[89]  Andrew Philippides,et al.  Snapshots in ants? New interpretations of paradigmatic experiments , 2013, Journal of Experimental Biology.

[90]  Barbara Webb,et al.  Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae , 2016, eLife.

[91]  Miriam Lehrer,et al.  Shape Perception in the Honeybee: Symmetry as a Global Framework , 1999, International Journal of Plant Sciences.

[92]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[93]  B. Pogue,et al.  Optical image reconstruction using frequency-domain data: simulations and experiments , 1996 .

[94]  Michael H. Dickinson,et al.  Idiothetic Path Integration in the Fruit Fly Drosophila melanogaster , 2017, Current Biology.

[95]  Barbara Webb,et al.  The internal maps of insects , 2019, Journal of Experimental Biology.

[96]  Michael Mangan,et al.  Route Following Without Scanning , 2015, Living Machines.

[97]  Simon M Stringer,et al.  Optimal cue combination and landmark‐stability learning in the head direction system , 2016, The Journal of physiology.

[98]  Angelique C Paulk,et al.  Closed-Loop Behavioral Control Increases Coherence in the Fly Brain , 2015, The Journal of Neuroscience.

[99]  B. A. Cartwright,et al.  How honey bees use landmarks to guide their return to a food source , 1982, Nature.

[100]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.