Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy

True nanoscale optical spectroscopy requires the efficient delivery of light for a spatially nanoconfined excitation. We utilize adiabatic plasmon focusing to concentrate an optical field into the apex of a scanning probe tip of ∼10 nm in radius. The conical tips with the ability for two-stage optical mode matching of the surface plasmon polariton (SPP) grating-coupling and the adiabatic propagating SPP conversion into a localized SPP at the tip apex represent a special optical antenna concept for far-field transduction into nanoscale excitation. The resulting high nanofocusing efficiency and the spatial separation of the plasmonic grating-coupling element on the tip shaft from the near-field apex probe region allows for true background-free nanospectroscopy. As an application, we demonstrate tip-enhanced Raman spectroscopy (TERS) of surface molecules with enhanced contrast and its extension into the near-IR with 800 nm excitation.

[1]  Dong Ha Kim,et al.  Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Zhong-Qun Tian,et al.  Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips , 2007 .

[3]  B. Ren,et al.  Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching , 2004 .

[4]  Markus B. Raschke,et al.  Scanning-probe Raman spectroscopy with single-molecule sensitivity , 2006 .

[5]  T. Elsaesser,et al.  Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. , 2007, Nano letters.

[6]  M. Raschke,et al.  Signal limitations in tip-enhanced Raman scattering: the challenge to become a routine analytical technique , 2010, Analytical and bioanalytical chemistry.

[7]  Christoph J. Brabec,et al.  Parabolic mirror‐assisted tip‐enhanced spectroscopic imaging for non‐transparent materials , 2009 .

[8]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[9]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[10]  T. D. Harris,et al.  Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale , 1991, Science.

[11]  R. Zenobi,et al.  Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips , 2007 .

[12]  Volker Deckert,et al.  Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. , 2008, Angewandte Chemie.

[13]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[14]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  S. Kawata,et al.  Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres , 2009 .

[16]  Maxim Durach,et al.  Toward full spatiotemporal control on the nanoscale. , 2007, Nano letters.

[17]  Donald F. Hornig,et al.  Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra. , 1956 .

[18]  Markus B. Raschke,et al.  Plasmonic light scattering from nanoscopic metal tips , 2005 .

[19]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[20]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[21]  Y. Morita,et al.  Temporal fluctuation of tip-enhanced raman spectra of adenine molecules , 2007 .

[22]  Kh. V. Nerkararyan,et al.  Superfocusing of surface polaritons in the conical structure , 2000 .

[23]  Nader A. Issa,et al.  Optical Nanofocusing on Tapered Metallic Waveguides , 2007 .

[24]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[25]  D. Roy,et al.  Novel methodology for estimating the enhancement factor for tip-enhanced Raman spectroscopy , 2009 .

[26]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[27]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[28]  Peter J. Pauzauskie,et al.  Tunable nanowire nonlinear optical probe , 2007, Nature.

[29]  M. Raschke,et al.  Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light Scattering, Tip−Sample Coupling, and Near-Field Enhancement , 2008 .

[30]  Claus Ropers,et al.  Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. , 2010, Nano letters.

[31]  Lukas Novotny,et al.  Near-field imaging with a localized nonlinear light source. , 2009, Nano letters.

[32]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[33]  Renato Zenobi,et al.  Tip-Enhanced Raman Spectroscopy Can See More: The Case of Cytochrome c , 2008 .

[34]  Mark I. Stockman,et al.  Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods , 2008 .

[35]  Quang Nguyen,et al.  Simple model for the polarization effects in tip-enhanced Raman spectroscopy , 2007 .

[36]  F. Keilmann,et al.  Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy , 2004 .

[37]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[38]  Lukas Novotny,et al.  Facts and artifacts in near-field optical microscopy , 1997 .

[39]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[40]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[41]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.