Computation and modeling in piecewise Chebyshevian spline spaces

A piecewise Chebyshevian spline space is good for design when it possesses a B-spline basis and this property is preserved under arbitrary knot insertion. The interest in piecewise Chebyshevian spline spaces that are good for design is justified by the fact that, similarly as for polynomial splines, the related parametric curves exhibit the desired properties of convex hull inclusion, variation diminution and intuitive relation between the curve shape and the location of the control points. For all good-for-design spaces, in this paper we construct a set of functions, called transition functions, which allow for efficient computation of the B-spline basis, even in the case of nonuniform and multiple knots. Moreover, we show how the spline coefficients of the representations associated with a refined knot partition and with a raised order can conveniently be expressed by means of transition functions. This result allows us to provide effective procedures that generalize the classical knot insertion and degree raising algorithms for polynomial splines. To illustrate the benefits of the proposed computational approaches, we provide several examples dealing with different types of piecewise Chebyshevian spline spaces that are good for design.

[1]  T. Lyche,et al.  A stable recurrence relation for trigonometric B-splines , 1979 .

[2]  Carla Manni,et al.  Polynomial cubic splines with tension properties , 2010, Comput. Aided Geom. Des..

[3]  Yeon Ju Lee,et al.  Modified Essentially Nonoscillatory Schemes Based on Exponential Polynomial Interpolation for Hyperbolic Conservation Laws , 2013, SIAM J. Numer. Anal..

[4]  Christophe Rabut,et al.  On Pierre Bézier's life and motivations , 2002, Comput. Aided Des..

[5]  Lucia Romani,et al.  Exponential Hermite splines for the analysis of biomedical images , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Gudrun Albrecht,et al.  Algebraic-Trigonometric Pythagorean-Hodograph curves and their use for Hermite interpolation , 2014, Advances in Computational Mathematics.

[7]  Jungho Yoon,et al.  Sixth-order Weighted Essentially Nonoscillatory Schemes Based on Exponential Polynomials , 2016, SIAM J. Sci. Comput..

[8]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[9]  Marie-Laurence Mazure,et al.  On a general new class of quasi Chebyshevian splines , 2011, Numerical Algorithms.

[10]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[11]  G. Mühlbach,et al.  Construction of B-splines for generalized spline spaces generated from local ECT-systems , 2003 .

[12]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[13]  Thierry Blu,et al.  Cardinal exponential splines: part I - theory and filtering algorithms , 2005, IEEE Transactions on Signal Processing.

[14]  Wanqiang Shen,et al.  Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..

[15]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[16]  Tom Lyche,et al.  Piecewise Chebysevian multiresolution analysis , 2011 .

[17]  J. M. Peña,et al.  Optimal bases for a class of mixed spaces and their associated spline spaces , 2010, Comput. Math. Appl..

[18]  M. Mazure Which spaces for design? , 2008, Numerische Mathematik.

[19]  Michael Unser,et al.  Ellipse-preserving Hermite interpolation and subdivision , 2014, 1411.4627.

[20]  Tom Lyche,et al.  A recurrence relation for chebyshevianB-splines , 1985 .

[21]  M. Rogina,et al.  Numerically stable algorithm for cycloidal splines , 2007 .

[22]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[23]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[24]  Yeon Ju Lee,et al.  Image zooming method using edge-directed moving least squares interpolation based on exponential polynomials , 2015, Appl. Math. Comput..

[25]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[26]  Marie-Laurence Mazure,et al.  Piecewise Smooth Spaces in Duality , 1999 .

[27]  Wanqiang Shen,et al.  A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..

[28]  Giulio Casciola,et al.  Degree elevation for p-Bézier curves , 1998, Comput. Aided Geom. Des..

[29]  Nira Dyn,et al.  Piecewise polynomial spaces and geometric continuity of curves , 1989 .

[30]  Marie-Laurence Mazure,et al.  Design with Quasi Extended Chebyshev piecewise spaces , 2016, Comput. Aided Geom. Des..

[31]  M. Mazure On a new criterion to decide whether a spline space can be used for design , 2012 .

[32]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[33]  Yeon Ju Lee,et al.  Exponential polynomial reproducing property of non-stationary symmetric subdivision schemes and normalized exponential B-splines , 2013, Adv. Comput. Math..

[34]  Michael Unser,et al.  Multiresolution Subdivision Snakes , 2017, IEEE Transactions on Image Processing.

[36]  G. Mühlbach ECT-B-splines defined by generalized divided differences , 2006 .

[37]  Marie-Laurence Mazure,et al.  Chebyshev splines beyond total positivity , 2001, Adv. Comput. Math..

[38]  Michael Unser,et al.  Exponential-spline wavelet bases , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[40]  Phillip J. Barry,et al.  de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves , 1996 .

[41]  Larry L. Schumaker On hyperbolic splines , 1983 .

[42]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[43]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[44]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[45]  L. Gemignani,et al.  Exponential pseudo-splines: Looking beyond exponential B-splines , 2016 .

[46]  Ling Yuan,et al.  Discontinuous Galerkin method based on non-polynomial approximation spaces , 2006, J. Comput. Phys..

[47]  Dmitry Berdinsky,et al.  Trigonometric generalized T-splines , 2014 .

[48]  A. Amini,et al.  A universal formula for generalized cardinal B-splines , 2016, Applied and Computational Harmonic Analysis.

[49]  Y. Lee,et al.  Analysis of Compactly Supported Nonstationary Biorthogonal Wavelet Systems Based on Exponential B-Splines , 2011 .

[50]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs , 2016 .

[51]  Jun Zhu,et al.  WENO Schemes and Their Application as Limiters for RKDG Methods Based on Trigonometric Approximation Spaces , 2013, J. Sci. Comput..

[52]  Carolina Vittoria Beccari,et al.  A general framework for the construction of piecewise-polynomial local interpolants of minimum degree , 2014, Adv. Comput. Math..

[53]  Marie-Laurence Mazure,et al.  Blossoming: A Geometrical Approach , 1999 .

[54]  Peter Massopust,et al.  Exponential B-splines and the partition of unity property , 2012, Adv. Comput. Math..

[55]  Carolina Vittoria Beccari,et al.  Piecewise Extended Chebyshev spaces: A numerical test for design , 2016, Appl. Math. Comput..

[56]  Carolina Vittoria Beccari,et al.  Construction and characterization of non-uniform local interpolating polynomial splines , 2013, J. Comput. Appl. Math..