DISCUSSION of “Evidence of chaos in the rainfall-runoff process” Which chaos in the rainfall-runoff process?

Abstract In the 1980s, there were numerous claims, based on estimates of the correlation dimension, that the variability of various geophysical processes, in particular rainfall, is generated by a low-dimensional deterministic chaos. Due to a recent attempt (Sivakumar et al., 2001) to revive the same approach and with claims of an analogous result for the rainfall-runoff process, we think it is necessary to clarify why this approach can be easily misleading. At the same time, we ask which chaos is involved in the rainfall-runoff process and what are the prospects for its modelling?

[1]  Nelson Obregón,et al.  A Deterministic Geometric Representation of Temporal Rainfall: Results for a Storm in Boston , 1996 .

[2]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Shaun Lovejoy,et al.  Non-Linear Variability in Geophysics , 1991 .

[4]  Shaun Lovejoy,et al.  Multifractals, universality classes and satellite and radar measurements of cloud and rain fields , 1990 .

[5]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[6]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[7]  J. Theiler Some comments on the correlation dimension of $1/f^\alpha$ noise , 1993, comp-gas/9302001.

[8]  Shie-Yui Liong,et al.  Singapore Rainfall Behavior: Chaotic? , 1999 .

[9]  F. Takens Detecting strange attractors in turbulence , 1981 .

[10]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[11]  Demetris Koutsoyiannis,et al.  Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series , 1996 .

[12]  Ronny Berndtsson,et al.  Evidence of chaos in the rainfall-runoff process , 2001 .

[13]  Bellie Sivakumar,et al.  Rainfall dynamics at different temporal scales: A chaotic perspective , 2001 .

[14]  Bellie Sivakumar,et al.  Chaos theory in hydrology: important issues and interpretations , 2000 .

[15]  Francesco Lisi,et al.  CHAOTIC FORECASTING OF DISCHARGE TIME SERIES: A CASE STUDY 1 , 2001 .

[16]  D. Schertzer,et al.  New Uncertainty Concepts in Hydrology and Water Resources: Multifractals and rain , 1995 .

[17]  A. Provenzale,et al.  Finite correlation dimension for stochastic systems with power-law spectra , 1989 .

[18]  Konstantine P. Georgakakos,et al.  Chaos in rainfall , 1989 .

[19]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[20]  Magnus Persson,et al.  Is correlation dimension a reliable indicator of low‐dimensional chaos in short hydrological time series? , 2002 .

[21]  Jinqiao Duan,et al.  Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.

[22]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[23]  E. Lorenz Dimension of weather and climate attractors , 1991, Nature.

[24]  A. Jayawardena,et al.  Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach , 2000 .

[25]  James B. Ramsey,et al.  The statistical properties of dimension calculations using small data sets , 1990 .

[26]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[27]  A. D. Kirwan,et al.  An Investigation of the Ability of Nonlinear Methods to Infer Dynamics from Observables , 1994 .

[28]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[29]  Shaun Lovejoy,et al.  NOTES AND CORRESPONDENCE Universal Multifractals Do Exist!: Comments on ''A Statistical Analysis of Mesoscale Rainfall as a Random Cascade'' , 1997 .

[30]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.

[31]  Luca Ridolfi,et al.  Nonlinear analysis of river flow time sequences , 1997 .

[32]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[33]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[34]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[35]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[36]  Shaun Lovejoy,et al.  Which chaos in the rainfall-runoff process? , 2002 .

[37]  Theiler,et al.  Spurious dimension from correlation algorithms applied to limited time-series data. , 1986, Physical review. A, General physics.

[38]  D. Schertzer,et al.  Non-Linear Variability in Geophysics : Scaling and Fractals , 1990 .

[39]  Zbigniew W. Kundzewicz,et al.  Dimensionality of Scandinavian river flow regimes , 1999 .

[40]  Upmanu Lall,et al.  Nonlinear Dynamics of the Great Salt Lake: Dimension Estimation , 1996 .

[41]  S. A. El-Wakil,et al.  Fractional Fokker–Planck equation , 2000 .

[42]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[43]  Shie-Yui Liong,et al.  A systematic approach to noise reduction in chaotic hydrological time series , 1999 .

[44]  William H. Press,et al.  Numerical recipes , 1990 .

[45]  Shaun Lovejoy,et al.  Multifractal Cascade Dynamics and Turbulent Intermittency , 1997 .

[46]  Shaun Lovejoy,et al.  Multifractals and extreme rainfall events , 1993 .

[47]  J. Kahane Definition of stable laws, infinitely divisible laws, and Lévy processes , 1995 .

[48]  Upmanu Lall,et al.  Nonlinear dynamics of the Great Salt Lake: system identification and prediction , 1996 .

[49]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[50]  J. Theiler Some Comments on the Correlation Dimension of 1/fαNoise , 1991 .

[51]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[52]  C. Essex Correlation Dimension and Data Sample Size , 1991 .