MicroRNA detection at femtomolar concentrations with isothermal amplification and a biological nanopore.

One of the greatest challenges faced by chemists and biologists is the detection of molecules at extremely low concentrations. This paper describes a method to detect ultra-low concentrations (1 femtomole) of nucleotides using isothermal amplification and a biological nanopore.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[4]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[5]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[6]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[7]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[8]  K. Rubinson,et al.  Single-molecule mass spectrometry in solution using a solitary nanopore , 2007, Proceedings of the National Academy of Sciences.

[9]  Nicholas N. Watkins,et al.  Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis , 2009, Advanced materials.

[10]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[11]  M. Muthukumar,et al.  Theory of capture rate in polymer translocation. , 2010, The Journal of chemical physics.

[12]  Zhiqiang Gao,et al.  Electrical sensor array for polymerase chain reaction-free messenger RNA expression profiling. , 2010, Analytical chemistry.

[13]  H. Bayley,et al.  Urea facilitates the translocation of single-stranded DNA and RNA through the alpha-hemolysin nanopore. , 2010, Biophysical journal.

[14]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[15]  R. Bashir,et al.  Lipid bilayer coated Al2O3 nanopore sensors: towards a hybrid biological solid-state nanopore , 2011, Biomedical microdevices.

[16]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[17]  H. Bayley,et al.  Subunit Dimers of α-Hemolysin Expand the Engineering Toolbox for Protein Nanopores* , 2011, The Journal of Biological Chemistry.

[18]  Julia Starega-Roslan,et al.  High-Resolution Northern Blot for a Reliable Analysis of MicroRNAs and Their Precursors , 2011, TheScientificWorldJournal.

[19]  Yan Zeng,et al.  Performing custom microRNA microarray experiments. , 2011, Journal of visualized experiments : JoVE.

[20]  Yong Wang,et al.  Nanopore-based detection of circulating microRNAs in lung cancer patients , 2011, Nature nanotechnology.

[21]  Shoji Takeuchi,et al.  Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. , 2011, Journal of the American Chemical Society.

[22]  W. Marsden I and J , 2012 .

[23]  Jacob K Rosenstein,et al.  Slow DNA transport through nanopores in hafnium oxide membranes. , 2013, ACS nano.

[24]  Yong Wang,et al.  Designing a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. , 2013, ACS nano.

[25]  Theodore D. Moustakas,et al.  Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores , 2013, Nature nanotechnology.

[26]  Yong Wang,et al.  Nanopore single-molecule detection of circulating microRNAs. , 2013, Methods in molecular biology.

[27]  T. Patel,et al.  microRNAs in liver disease: from diagnostics to therapeutics. , 2013, Clinical biochemistry.

[28]  E. Malek,et al.  MicroRNAs in Brain Metastases: Potential Role as Diagnostics and Therapeutics , 2014, International journal of molecular sciences.

[29]  Jay Shendure,et al.  Decoding long nanopore sequencing reads of natural DNA , 2014, Nature Biotechnology.

[30]  C. Fan,et al.  Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level. , 2014, Analytical chemistry.

[31]  Li-Qun Gu,et al.  Programming Nanopore Ion Flow for Encoded Multiplex MicroRNA Detection , 2014, ACS nano.

[32]  S. Khalid,et al.  The Nucleotide Capture Region of Alpha Hemolysin: Insights into Nanopore Design for DNA Sequencing from Molecular Dynamics Simulations , 2015, Nanomaterials.

[33]  Masayuki Yamamura,et al.  Cascading DNA Generation Reaction for Controlling DNA Nanomachines at a Physiological Temperature , 2015, New Generation Computing.

[34]  Xiang Zhou,et al.  A review: microRNA detection methods. , 2015, Organic & biomolecular chemistry.

[35]  S. Szymczak,et al.  Sparse Modeling Reveals miRNA Signatures for Diagnostics of Inflammatory Bowel Disease , 2015, PloS one.

[36]  D. Branton,et al.  Three decades of nanopore sequencing , 2016, Nature Biotechnology.

[37]  Ryuji Kawano,et al.  Hairpin DNA Unzipping Analysis Using a Biological Nanopore Array , 2016 .

[38]  A. Giordano,et al.  MicroRNAs: A Puzzling Tool in Cancer Diagnostics and Therapy. , 2016, Anticancer research.

[39]  Sang-Hyun Oh,et al.  Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping , 2016, Nature Communications.

[40]  Ryuji Kawano,et al.  Amplification and Quantification of an Antisense Oligonucleotide from Target microRNA Using Programmable DNA and a Biological Nanopore. , 2017, Analytical chemistry.

[41]  Jia Huang,et al.  Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer , 2016, Oncology letters.