New Lower Bounds to the Output Entropy of Multi-Mode Quantum Gaussian Channels
暂无分享,去创建一个
[1] V. Giovannetti,et al. Multimode Gaussian optimizers for the Wehrl entropy and quantum Gaussian channels , 2017, 1705.00499.
[2] Giacomo De Palma,et al. Gaussian states minimize the output entropy of one-mode quantum Gaussian channels , 2016, Physical review letters.
[3] A. Holevo,et al. Quantum state majorization at the output of bosonic Gaussian channels , 2013, Nature Communications.
[4] Igor Devetak,et al. Quantum Broadcast Channels , 2006, IEEE Transactions on Information Theory.
[5] R. Konig,et al. The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.
[6] Saikat Guha,et al. Capacity of the bosonic wiretap channel and the Entropy Photon-Number Inequality , 2008, 2008 IEEE International Symposium on Information Theory.
[7] Saikat Guha,et al. Quantum trade-off coding for bosonic communication , 2011, ArXiv.
[8] Dario Trevisan,et al. Gaussian States Minimize the Output Entropy of the One-Mode Quantum Attenuator , 2016, IEEE Transactions on Information Theory.
[9] Giacomo De Palma,et al. Gaussian optimizers for entropic inequalities in quantum information , 2018, Journal of Mathematical Physics.
[10] Giacomo De Palma,et al. The conditional Entropy Power Inequality for quantum additive noise channels , 2018, Journal of Mathematical Physics.
[11] V. Giovannetti,et al. The One-Mode Quantum-Limited Gaussian Attenuator and Amplifier Have GaussianMaximizers , 2016, Annales Henri Poincaré.
[12] S. Olivares,et al. Gaussian states in continuous variable quantum information , 2005, quant-ph/0503237.
[13] S. Olivares,et al. Gaussian States in Quantum Information , 2005 .
[14] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[15] Robert Koenig,et al. Geometric inequalities from phase space translations , 2016, 1606.08603.
[16] Mark M. Wilde,et al. Capacities of Quantum Amplifier Channels , 2016, ArXiv.
[17] Mark M. Wilde,et al. Classical Codes for Quantum Broadcast Channels , 2011, IEEE Transactions on Information Theory.
[18] Saikat Guha,et al. The Entropy Photon-Number Inequality and its consequences , 2007, 2008 Information Theory and Applications Workshop.
[19] V.W.S. Chan,et al. Free-Space Optical Communications , 2006, Journal of Lightwave Technology.
[20] G. De Palma,et al. The Conditional Entropy Power Inequality for Bosonic Quantum Systems , 2017, Communications in Mathematical Physics.
[21] Mark M. Wilde,et al. Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.
[22] S. Lloyd,et al. Multimode quantum entropy power inequality , 2014, 1408.6410.
[23] Stephen M. Barnett,et al. Methods in Theoretical Quantum Optics , 1997 .
[24] A. Holevo. Gaussian optimizers and the additivity problem in quantum information theory , 2015, 1501.00652.
[25] G. Palma. Gaussian optimizers and other topics in quantum information , 2017, 1710.09395.
[26] Alexander S. Holevo,et al. One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..
[27] A. Holevo,et al. A Solution of Gaussian Optimizer Conjecture for Quantum Channels , 2015 .
[28] Alexander Semenovich Holevo,et al. Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .
[29] Giacomo De Palma,et al. Passive States Optimize the Output of Bosonic Gaussian Quantum Channels , 2015, IEEE Transactions on Information Theory.
[30] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .
[31] On the notion of entanglement in Hilbert spaces , 2005 .
[32] Mark M. Wilde,et al. The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..
[33] Graeme Smith,et al. Corrections to “The Entropy Power Inequality for Quantum Systems” [Mar 14 1536-1548] , 2016, IEEE Transactions on Information Theory.
[34] Saikat Guha,et al. Classical Information Capacity of the Bosonic Broadcast Channel , 2007, 2007 IEEE International Symposium on Information Theory.
[35] Saikat Guha,et al. Information trade-offs for optical quantum communication , 2012, Physical review letters.
[36] J. Shapiro,et al. Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture , 2007, 0706.3416.
[37] Saikat Guha,et al. On the minimum output entropy of single-mode phase-insensitive Gaussian channels , 2016 .
[38] Mark M. Wilde,et al. Trading classical communication, quantum communication, and entanglement in quantum Shannon theory , 2009, IEEE Transactions on Information Theory.
[39] Timothy C. Ralph,et al. Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).
[40] J. Habif,et al. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver , 2011, Nature Photonics.
[41] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[42] V. Giovannetti,et al. A generalization of the entropy power inequality to bosonic quantum systems , 2014, 1402.0404.