Sequential Learning of Active Subspaces

In recent years, active subspace methods (ASMs) have become a popular means of performing subspace sensitivity analysis on black-box functions. Naively applied, however, ASMs require gradient evaluations of the target function. In the event of noisy, expensive, or stochastic simulators, evaluating gradients via finite differencing may be infeasible. In such cases, often a surrogate model is employed, on which finite differencing is performed. When the surrogate model is a Gaussian process, we show that the ASM estimator is available in closed form, rendering the finite-difference approximation unnecessary. We use our closed-form solution to develop acquisition functions focused on sequential learning tailored to sensitivity analysis on top of ASMs. We also show that the traditional ASM estimator may be viewed as a method of moments estimator for a certain class of Gaussian processes. We demonstrate how uncertainty on Gaussian process hyperparameters may be propagated to uncertainty on the sensitivity analysis, allowing model-based confidence intervals on the active subspace. Our methodological developments are illustrated on several examples.

[1]  A. Samarov Exploring Regression Structure Using Nonparametric Functional Estimation , 1993 .

[2]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[3]  R. Bellman Dynamic programming. , 1957, Science.

[4]  Stefan M. Wild,et al.  Derivative-free optimization methods , 2019, Acta Numerica.

[5]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[6]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[7]  Stephen Barnett,et al.  Matrix Methods for Engineers and Scientists , 1982 .

[8]  Liping Zhu,et al.  A Review on Dimension Reduction , 2013, International statistical review = Revue internationale de statistique.

[9]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[10]  Amandine Marrel,et al.  Estimation of the Derivative-Based Global Sensitivity Measures Using a Gaussian Process Metamodel , 2016, SIAM/ASA J. Uncertain. Quantification.

[11]  Ilias Bilionis,et al.  Gaussian processes with built-in dimensionality reduction: Applications in high-dimensional uncertainty propagation , 2016, 1602.04550.

[12]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[13]  Pramudita Satria Palar,et al.  Exploiting active subspaces in global optimization: how complex is your problem? , 2017, GECCO.

[14]  Stefan M. Wild,et al.  Estimating Derivatives of Noisy Simulations , 2012, TOMS.

[15]  Jorge Nocedal,et al.  Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” , 2011, TOMS.

[16]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[17]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[18]  Ilse C. F. Ipsen,et al.  A Probabilistic Subspace Bound with Application to Active Subspaces , 2018, SIAM J. Matrix Anal. Appl..

[19]  K. Fukumizu,et al.  Gradient-Based Kernel Dimension Reduction for Regression , 2014 .

[20]  Andy J. Keane,et al.  Dimension Reduction for Aerodynamic Design Optimization , 2011 .

[21]  T Labopin-Richard,et al.  Sequential design of experiments for estimating percentiles of black-box functions , 2016, 1605.05524.

[22]  Juan J. Alonso,et al.  On Active Subspaces in Car Aerodynamics , 2016 .

[23]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[24]  Sucharita Ghosh,et al.  Kernel Smoothing: Principles, Methods and Applications: Principles, Methods and Applications , 2017 .

[25]  David Ginsbourger,et al.  ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis , 2011, J. Multivar. Anal..

[26]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[27]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[28]  Pramudita Satria Palar,et al.  On The Accuracy of Kriging Model in Active Subspaces , 2018 .

[29]  Shigeru Obayashi,et al.  Kriging surrogate model with coordinate transformation based on likelihood and gradient , 2017, J. Glob. Optim..

[30]  David Ginsbourger,et al.  Additive Kernels for Gaussian Process Modeling , 2011, 1103.4023.

[31]  Nando de Freitas,et al.  Bayesian Optimization in a Billion Dimensions via Random Embeddings , 2013, J. Artif. Intell. Res..

[32]  Nabil Rachdi,et al.  New sensitivity analysis subordinated to a contrast , 2013, 1305.2329.

[33]  Andreas Krause,et al.  High-Dimensional Gaussian Process Bandits , 2013, NIPS.

[34]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[35]  Mike Ludkovski,et al.  Replication or Exploration? Sequential Design for Stochastic Simulation Experiments , 2017, Technometrics.

[36]  Paul G. Constantine,et al.  Data-Driven Polynomial Ridge Approximation Using Variable Projection , 2017, SIAM J. Sci. Comput..

[37]  Kaare Brandt Petersen,et al.  The Matrix Cookbook , 2006 .

[38]  Michael B. Wakin,et al.  Computing active subspaces efficiently with gradient sketching , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[39]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[40]  Bing Li,et al.  Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice , 2016, J. Comput. Phys..

[41]  B. Efron Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods , 1981 .

[42]  Malek Ben Salem,et al.  Sequential dimension reduction for learning features of expensive black-box functions , 2019 .

[43]  Minyong R. Lee,et al.  Modified Active Subspaces Using the Average of Gradients , 2019, SIAM/ASA J. Uncertain. Quantification.

[44]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[45]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[46]  Roman Garnett,et al.  Active Learning of Linear Embeddings for Gaussian Processes , 2013, UAI.

[47]  Paul G. Constantine,et al.  Inverse regression for ridge recovery: a data-driven approach for parameter reduction in computer experiments , 2017, Statistics and computing.

[48]  Carl E. Rasmussen,et al.  Additive Gaussian Processes , 2011, NIPS.

[49]  Christopher K. I. Williams,et al.  Discovering Hidden Features with Gaussian Processes Regression , 1998, NIPS.

[50]  Chih-Li Sung,et al.  Multiresolution Functional ANOVA for Large-Scale, Many-Input Computer Experiments , 2017, Journal of the American Statistical Association.