Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices.

We explore the dependence of the dark current of C(60)-based organic photovoltaic (OPV) cells on molecular composition and the degree of intermolecular interaction of several molecular donor materials. The saturation dark current density, J(S), is an important factor in determining the open circuit voltage, V(oc). The V(oc) values of OPVs show a strong inverse correlation with J(S). Donor materials that show evidence for aggregation in their thin-film absorption spectra and polycrystallinity in thin film X-ray diffraction result in a high dark current, and thus a low V(oc). In contrast, donor materials with structures that hinder intermolecular pi-interaction give amorphous thin films and reduced values of J(S), relative to donors with strong intermolecular pi-interactions, leading to a high V(oc). This work provides guidance for the design of materials and device architectures that maximize OPV cell power conversion efficiency.

[1]  Gang Li,et al.  Accurate Measurement and Characterization of Organic Solar Cells , 2006 .

[2]  Stephen R. Forrest,et al.  Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells , 2009 .

[3]  C. C. Mattheus,et al.  Influence of the molecular shape on the film growth of a substituted phthalocyanine , 2004 .

[4]  Ingo Riedel,et al.  Effect of Temperature and Illumination on the Electrical Characteristics of Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2004 .

[5]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[6]  Jan C Hummelen,et al.  Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. , 2007, Organic letters.

[7]  Y. Masumoto,et al.  Polycrystallization of Vaporized Hole-Transport Materials for Organic Light-Emitting Diodes and Its Suppression Using Organic Alloy Method , 2007 .

[8]  K. Seki,et al.  Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy , 1981 .

[9]  Yang Yang,et al.  Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices , 2001 .

[10]  A. Kucernak,et al.  Spectroscopic and electrochemical studies on platinum and palladium phthalocyanines , 2004 .

[11]  Jean Manca,et al.  The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells , 2008 .

[12]  O. Inganäs,et al.  Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative , 2004 .

[13]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[14]  Stephen R. Forrest,et al.  Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices , 1996 .

[15]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[16]  Shubhashish Datta,et al.  Relationship between the ionization and oxidation potentials of molecular organic semiconductors , 2005 .

[17]  Stephen R Forrest,et al.  Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex. , 2007, Angewandte Chemie.

[18]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[19]  Kazuhiro Saito,et al.  Realization of Large Open-Circuit Photovoltage in Organic Thin-Film Solar Cells by Controlling Measurement Environment , 2006 .

[20]  J. A. Ferreira,et al.  Absorption coefficients and fluorescence quantum yields of porphyrin films determined by optical and photoacoustic spectroscopies , 1991 .

[21]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[22]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[23]  P. Würfel Physics of solar cells : from principles to new concepts , 2005 .

[24]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[25]  W. Stampor,et al.  Photophysics of an electrophosphorescent platinum (II) porphyrin in solid films. , 2005, The Journal of chemical physics.

[26]  Barry P Rand,et al.  Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. , 2006, Journal of the American Chemical Society.

[27]  Bernard Kippelen,et al.  Origin of the open-circuit voltage in multilayer heterojunction organic solar cells , 2008 .

[28]  M. Fujihira,et al.  Influence of the work function of chemically modified indium-tin-oxide electrodes on the open-circuit voltage of heterojunction photovoltaic cells , 2008 .

[29]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .

[30]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[31]  On the light intensity dependence of short-circuit current of bilayer organic photovoltaic cells , 2008 .

[32]  Paul W. M. Blom,et al.  Optimum charge carrier mobility in organic solar cells , 2007 .

[33]  V. Mihailetchi,et al.  Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells , 2003 .

[34]  L. Kipp,et al.  EXPERIMENTAL BAND GAP AND CORE-HOLE ELECTRON INTERACTION IN EPITAXIAL C60 FILMS , 1998 .

[35]  Shubin Liu,et al.  Evidence of low intermolecular coupling in rubrene single crystals by Raman scattering , 2007 .

[36]  Thomas N. Jackson,et al.  Thin-film transistors based on well-ordered thermally evaporated naphthacene films , 2002 .

[37]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[38]  Byoungnam Park,et al.  Ambipolar rubrene thin film transistors , 2006 .