Effect of micro-Si3N4-nano-Al2O,sub>3 co-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites

Silicone rubber (SR) is widely used on the distribution and transmission lines of power systems owing to its excellent insulating properties, extraordinary hydrophobicity and high tensile strength. However, the thermal conductivity of pure silicone rubber is very low which restricts its application for long time due to heat formation under electric field. This research focuses on the effect of micro-and nano-sized filler mixture on thermal conductivity, dielectric and mechanical properties of the SR composites. The micro-Si<sub>3</sub>N<sub>4</sub> and nano-Al<sub>2</sub>O<sub>3</sub> cofilled SR composites (MNCSR) with different volume ratios of Si<sub>3</sub>N<sub>4</sub> and Al<sub>2</sub>O<sub>3</sub> were fabricated by simple blending and subsequently hot molding technique. With the addition of micro-Si<sub>3</sub>N<sub>4</sub>-nano-Al<sub>2</sub>O<sub>3</sub> mixture at 30 vol. % (Si<sub>3</sub>N<sub>4</sub>/Al<sub>2</sub>O<sub>3</sub>=26/4), the composites showed high thermal conductivity of ~ 1.6 W m<sup>-1</sup> k<sup>-1</sup>, low relative dielectric permittivity of ~ 5.3 and high breakdown strength of ~ 85 MV/m. Meanwhile, the introduction of micro-nano-sized particles resulted in improved elongation at beak and tensile strength. Besides, the MNCSR composites demonstrated good hydrophobicity with the static contact angle over 110°. The combination of these outstanding performances makes the MNCSR composites attractive in the field of insulating materials.

[1]  Tao Ai,et al.  A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity , 2009 .

[2]  L. Schadler,et al.  Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[3]  Kankanhalli N. Seetharamu,et al.  Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes , 2005 .

[4]  C. Zhi,et al.  Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement , 2010 .

[5]  M. Ehsani,et al.  Lifetime prediction of HV silicone rubber insulators based on mechanical tests after thermal ageing , 2013, IEEE Transactions on Dielectrics and Electrical Insulation.

[6]  Xingyi Huang,et al.  Role of interface in highly filled epoxy/BaTiO3 nanocomposites. Part II- effect of nanoparticle surface chemistry on processing, thermal expansion, energy storage and breakdown strength of the nanocomposites , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[7]  M. Farzaneh,et al.  SURVEY OF MICRO/NANO FILLER USE TO IMPROVE SILICONE RUBBER FOR OUTDOOR INSULATORS , 2011 .

[8]  S. Rowland,et al.  Aging of silicone rubber composite insulators on 400 kV transmission lines , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  M. Farzaneh,et al.  Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface , 2011 .

[10]  Shuhua Qi,et al.  Effect of the particle size of Al2O3 on the properties of filled heat‐conductive silicone rubber , 2007 .

[11]  Shengtao Li,et al.  Fundamentals, processes and applications of high-permittivity polymer–matrix composites , 2012 .

[12]  A. Fina,et al.  Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review , 2011 .

[13]  B. Du,et al.  Pattern analysis of discharge characteristics for hydrophobicity evaluation of polymer insulator , 2011, IEEE Transactions on Dielectrics and Electrical Insulation.

[14]  L. Drzal,et al.  A Route for Polymer Nanocomposites with Engineered Electrical Conductivity and Percolation Threshold , 2010, Materials.

[15]  Ayse Aytac,et al.  Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites , 2010 .

[16]  Tong Lin,et al.  Fluoroalkyl Silane Modified Silicone Rubber/Nanoparticle Composite: A Super Durable, Robust Superhydrophobic Fabric Coating , 2012, Advanced materials.

[17]  L. Schadler,et al.  Influence of Nanoparticle Surfaces on the Electrical Breakdown Strength of Nanoparticle-Filled Low-Density Polyethylene , 2004 .

[18]  Shengtao Li,et al.  Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[19]  R. Hackam,et al.  Recovery of Hydrophobicity of HTV Silicone Rubber after Accelerated Aging in Saline Solutions , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[20]  B X Du,et al.  Effect of ambient temperature on electrical treeing characteristics in silicone rubber , 2011, IEEE transactions on dielectrics and electrical insulation.

[21]  E.A. Cherney,et al.  The role of inorganic fillers in silicone rubber for outdoor insulation alumina tri-hydrate or silica , 2004, IEEE Electrical Insulation Magazine.

[22]  T. Tanaka,et al.  Dielectric nanocomposites with insulating properties , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[23]  E. Cherney Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications , 2005, CEIDP '05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005..

[24]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[25]  A. Alarcón,et al.  FUNDAMENTALS , 2000, Springer Monographs in Mathematics.

[26]  L. Schadler,et al.  Polymer nanocomposite dielectrics-the role of the interface , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[27]  Xingyi Huang,et al.  Role of interface in highly filled epoxy/BaTiO3 nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property , 2014, IEEE Transactions on Dielectrics and Electrical Insulation.

[28]  M. J. Thomas,et al.  Corona aging studies on silicone rubber nanocomposites , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[29]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[30]  J. Zha,et al.  Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films with High Dielectric Permittivity , 2009 .

[31]  Shengtao Li,et al.  Prominent nonlinear electrical conduction characteristic in T-ZnOw/PTFE composites with low threshold field , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[32]  J. Zha,et al.  Low dielectric permittivity and high thermal conductivity silicone rubber composites with micro-nano-sized particles , 2012 .

[33]  Meysam Rahmat,et al.  Carbon nanotube–polymer interactions in nanocomposites: A review , 2011 .

[34]  J. Zha,et al.  Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites , 2011 .