Black holes in the early Universe

The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics.

[1]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[2]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[3]  R. L. Brown,et al.  Intense sub-arcsecond structure in the galactic center , 1974 .

[4]  S. Hawking,et al.  Gamma rays from primordial black holes , 1976 .

[5]  J. R. Bond,et al.  The Evolution and fate of Very Massive Objects , 1984 .

[6]  M. Rees,et al.  Pregalactic evolution in cosmologies with cold dark matter , 1986 .

[7]  A. Loeb,et al.  Collapse of primordial gas clouds and the formation of quasar black holes , 1994, astro-ph/9401026.

[8]  Origin of quasar progenitors from the collapse of low spin cosmological perturbations , 1994, astro-ph/9401016.

[9]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[10]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[11]  A. J. Drake,et al.  The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations , 2000, astro-ph/0001272.

[12]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[13]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[14]  Shaouly Bar-Shalom,et al.  Graviton production by two photon and electron photon processes in Kaluza-Klein theories with large extra dimensions , 2000 .

[15]  P. Monaco,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001 .

[16]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[17]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[18]  et al,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[19]  Z. Haiman,et al.  What Is the Highest Plausible Redshift of Luminous Quasars? , 2000, astro-ph/0011529.

[20]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[21]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[22]  Z. Haiman,et al.  Second-Generation Objects in the Universe: Radiative Cooling and Collapse of Halos with Virial Temperatures above 104 K , 2001, astro-ph/0108071.

[23]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[24]  Bernard Carr Primordial Black Holes as a Probe of Cosmology and High Energy Physics , 2003 .

[25]  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 04/03/99 FORMATION OF THE FIRST SUPERMASSIVE BLACK HOLES , 2002 .

[26]  C. Lämmerzahl,et al.  Quantum gravity : from theory to experimental search , 2003 .

[27]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[28]  A. University,et al.  Massive black hole seeds from low angular momentum material , 2003, astro-ph/0311487.

[29]  L. Ho,et al.  POX 52: A Dwarf Seyfert 1 Galaxy with an Intermediate-Mass Black Hole , 2004, astro-ph/0402110.

[30]  Supermassive black hole demography: the match between the local and accreted mass functions , 2004, astro-ph/0405585.

[31]  R. Genzel,et al.  The Nuclear Gas Dynamics and Star Formation of Markarian 231 , 2004, astro-ph/0406342.

[32]  Tadayuki Kodama,et al.  Down-sizing in galaxy formation at z~1 , 2004 .

[33]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[34]  Volker Bromm,et al.  The First Stars , 2004 .

[35]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[36]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[37]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[38]  Keck spectroscopy of distant GOODS spheroidal galaxies: Downsizing in a hierarchical Universe , 2005, astro-ph/0502028.

[39]  A. Sakharov,et al.  Primordial structure of massive black hole clusters , 2004, astro-ph/0401532.

[40]  Garching,et al.  Hydrodynamical simulations of cluster formation with central AGN heating , 2005, astro-ph/0509506.

[41]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[42]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[43]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[44]  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[45]  Martin J. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[46]  UCOLick,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE MASS ASSEMBLY HISTORY OF FIELD GALAXIES: DETECTION OF AN EVOLVING MASS LIMIT FOR STAR FORMING GALAXIES , 2005 .

[47]  S. Driver,et al.  A Log-Quadratic Relation for Predicting Supermassive Black Hole Masses from the Host Bulge Sérsic Index , 2006, astro-ph/0607378.

[48]  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2006, astro-ph/0601303.

[49]  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[50]  V. Springel,et al.  A unified model for AGN feedback in cosmological simulations of structure formation , 2007, 0705.2238.

[51]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[52]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[53]  J. B. Marquette,et al.  Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds , 2006, astro-ph/0607207.

[54]  G. Gavazzi,et al.  The census of nuclear activity of late-type galaxies in the Virgo cluster , 2007, 0707.0999.

[55]  K. Schawinski,et al.  Observational evidence for AGN feedback in early-type galaxies , 2007, 0709.3015.

[56]  R. Genzel,et al.  A Close Look at Star Formation around Active Galactic Nuclei , 2007, 0704.1374.

[57]  M. Colpi,et al.  Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion , 2006, astro-ph/0612505.

[58]  The aftermath of the first stars: massive black holes , 2006, astro-ph/0605691.

[59]  S. Tremaine,et al.  Selection Bias in Observing the Cosmological Evolution of the M•-σ and M•-L Relationships , 2007, 0705.4103.

[60]  D. Merritt EVOLUTION OF NUCLEAR STAR CLUSTERS , 2008, 0802.3186.

[61]  A. M. Swinbank,et al.  WEIGHING THE BLACK HOLES IN z ≈ 2 SUBMILLIMETER-EMITTING GALAXIES HOSTING ACTIVE GALACTIC NUCLEI , 2008, The Astronomical Journal.

[62]  A. Seth,et al.  The Coincidence of Nuclear Star Clusters and Active Galactic Nuclei , 2008, 0801.0439.

[63]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[64]  Z. Haiman,et al.  Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes , 2008, 0810.0014.

[65]  P. Armitage,et al.  Quasi-stars: accreting black holes inside massive envelopes , 2007, 0711.4078.

[66]  J. Ostriker,et al.  Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates , 2007, 0709.0524.

[67]  T. Greif,et al.  Occurrence of metal-free galaxies in the early Universe , 2007, 0711.4622.

[68]  C. Breuck,et al.  Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the “Quasar Era” , 2008, 0809.5171.

[69]  T. D. Matteo,et al.  Direct Cosmological Simulations of the Growth of Black Holes and Galaxies , 2007, 0705.2269.

[70]  P. Marshall,et al.  AMUSE-Virgo. I. Supermassive Black Holes in Low-Mass Spheroids , 2007, 0711.2073.

[71]  Z. Haiman,et al.  Can Supermassive Black Holes Form in Metal-enriched High-Redshift Protogalaxies? , 2008, 0804.3141.

[72]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[73]  Matthew J. Turk,et al.  The Formation of Population III Binaries from Cosmological Initial Conditions , 2009, Science.

[74]  V. Springel,et al.  The case for AGN feedback in galaxy groups , 2009, 0911.2641.

[75]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[76]  Adam D. Myers,et al.  The 2dF-SDSS LRG and QSO Survey: the QSO luminosity function at 0.4 < z < 2.6 , 2009, 0907.2727.

[77]  L. Spitler,et al.  Quantifying the coexistence of massive black holes and dense nuclear star clusters , 2009, 0907.5250.

[78]  Accretion onto Seed Black Holes in the First Galaxies , 2008, 0809.2404.

[79]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[80]  M. Begelman Evolution of supermassive stars as a pathway to black hole formation , 2009, 0910.4398.

[81]  K. Schawinski,et al.  DO MODERATE-LUMINOSITY ACTIVE GALACTIC NUCLEI SUPPRESS STAR FORMATION? , 2009, 0901.1663.

[82]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[83]  M. Begelman,et al.  ANGULAR MOMENTUM TRANSFER AND LACK OF FRAGMENTATION IN SELF-GRAVITATING ACCRETION FLOWS , 2009, 0904.4247.

[84]  R. McLure,et al.  THE CANADA–FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6 , 2009, 0912.0281.

[85]  C. Peng,et al.  PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE–BULGE RELATIONS AT LOW MASS , 2010, 1007.2851.

[86]  Johns Hopkins University,et al.  Timing the starburst–AGN connection , 2010, 1002.3156.

[87]  KwangHo Park,et al.  ACCRETION ONTO INTERMEDIATE-MASS BLACK HOLES REGULATED BY RADIATIVE FEEDBACK. I. PARAMETRIC STUDY FOR SPHERICALLY SYMMETRIC ACCRETION , 2010, 1006.1302.

[88]  P. Best,et al.  CO-EVOLUTION OF CENTRAL BLACK HOLES AND GALAXIES , 2010 .

[89]  R. Maiolino,et al.  The MBH Mstar relation of obscured AGNs at high redshift , 2010, 1010.0768.

[90]  Z. Haiman,et al.  Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K , 2009, 0906.4773.

[91]  J. Gair,et al.  Massive black holes lurking in Milky Way satellites , 2010, 1001.5451.

[92]  Andreas Burkert,et al.  A CORRELATION BETWEEN CENTRAL SUPERMASSIVE BLACK HOLES AND THE GLOBULAR CLUSTER SYSTEMS OF EARLY-TYPE GALAXIES , 2010, 1004.0137.

[93]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[94]  L. Mayer,et al.  Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers , 2009, Nature.

[95]  M. Colpi,et al.  High-redshift formation and evolution of central massive objects - I. Model description , 2010, 1001.3874.

[96]  M. Volonteri,et al.  Quasi‐stars and the cosmic evolution of massive black holes , 2010, 1003.5220.

[97]  R. Maiolino,et al.  Quasar feedback revealed by giant molecular outflows , 2010, 1006.1655.

[98]  A. Hamilton,et al.  MEASURING GAS ACCRETION AND ANGULAR MOMENTUM NEAR SIMULATED SUPERMASSIVE BLACK HOLES , 2010, 1004.3785.

[99]  T. Quinn,et al.  WANDERING BLACK HOLES IN BRIGHT DISK GALAXY HALOS , 2010, 1008.5147.

[100]  R. J. Assef,et al.  THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION , 2010, 1001.4529.

[101]  M. Khlopov Primordial black holes , 2007, 0801.0116.

[102]  L. Ho,et al.  AEGIS: DEMOGRAPHICS OF X-RAY AND OPTICALLY SELECTED ACTIVE GALACTIC NUCLEI , 2010, 1007.3494.

[103]  J. Dunlop,et al.  The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at z≃ 4 , 2011, 1107.2397.

[104]  T. Storchi-Bergmann,et al.  Feeding and feedback in the active nucleus of Mrk 1157 probed with the Gemini Near-Infrared Integral-Field Spectrograph , 2011, 1107.2564.

[105]  C. Willott NO EVIDENCE OF OBSCURED, ACCRETING BLACK HOLES IN MOST z = 6 STAR-FORMING GALAXIES , 2011, 1110.4118.

[106]  C. Brogan,et al.  Low-mass black holes as the remnants of primordial black hole formation , 2012, Nature Communications.

[107]  P. T. de Zeeuw,et al.  DISCOVERY OF AN ACTIVE GALACTIC NUCLEUS DRIVEN MOLECULAR OUTFLOW IN THE LOCAL EARLY-TYPE GALAXY NGC 1266 , 2011, 1104.2326.

[108]  T. Quinn,et al.  THE FIRST MASSIVE BLACK HOLE SEEDS AND THEIR HOSTS , 2011, 1104.3858.

[109]  K. Freeman,et al.  Tracing the ancestry of galaxies : (on the land of our ancestors) : Proceedings of the 227th Symposium of the International Astronomical Union held in Ougadougou, Burkina Faso, December 13-17, 2010 , 2011 .

[110]  K. Schawinski,et al.  Black hole growth in the early Universe is self-regulated and largely hidden from view , 2011, Nature.

[111]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[112]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[113]  T. Greif,et al.  The First Stars: Mass Growth Under Protostellar Feedback , 2011, 1109.3147.

[114]  S. Djorgovski,et al.  THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z ∼ 4: IMPLICATIONS FOR IONIZATION OF THE INTERGALACTIC MEDIUM AND COSMIC DOWNSIZING , 2009, 0912.2799.

[115]  R. Klessen,et al.  GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS , 2010, 1006.1508.

[116]  D. Proga,et al.  SPH Simulations of Black Hole Accretion: A Step to Model Black Hole Feedback in Galaxies , 2011, 1102.3925.

[117]  M. Volonteri,et al.  Assessing the redshift evolution of massive black holes and their hosts , 2011, 1107.1946.

[118]  R. I. Davies,et al.  OUTFLOWS FROM ACTIVE GALACTIC NUCLEI: KINEMATICS OF THE NARROW-LINE AND CORONAL-LINE REGIONS IN SEYFERT GALAXIES, , 2011, 1107.3140.

[119]  Heidelberg,et al.  GALAXY FORMATION WITH SELF-CONSISTENTLY MODELED STARS AND MASSIVE BLACK HOLES. I. FEEDBACK-REGULATED STAR FORMATION AND BLACK HOLE GROWTH , 2011, 1106.4007.

[120]  M. Mateo,et al.  MASSIVE BLACK HOLES IN STELLAR SYSTEMS: “QUIESCENT” ACCRETION AND LUMINOSITY , 2010, 1011.4311.

[121]  T. Treu,et al.  THE RELATION BETWEEN BLACK HOLE MASS AND HOST SPHEROID STELLAR MASS OUT TO z ∼ 2 , 2011, 1102.1975.

[122]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[123]  M. Colpi,et al.  High‐redshift formation and evolution of central massive objects – II. The census of BH seeds , 2012, 1201.3761.

[124]  Raphael Sadoun,et al.  MBHrelation between SMBHs and the velocity dispersion of globular cluster systems , 2012, 1204.0144.

[125]  G. Hasinger,et al.  THE FAINTEST X-RAY SOURCES FROM z = 0 TO 8,, , 2011, 1110.3326.

[126]  T. Treu,et al.  AMUSE-Field I: NUCLEAR X-RAY PROPERTIES OF LOCAL FIELD AND GROUP SPHEROIDS ACROSS THE STELLAR MASS SCALE , 2011, 1112.3985.

[127]  A. Fontana,et al.  Faint high-redshift AGN in the Chandra deep field south: the evolution of the AGN luminosity function and black hole demography , 2011, 1109.2888.

[128]  R. Klessen,et al.  THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK , 2011, 1111.6305.

[129]  Warren R. Brown,et al.  BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS , 2012, 1203.6685.