Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures

Abstract This article reviews recent advances in emission of terahertz radiation from two-dimensional (2D) electron systems in semiconductor nano-heterostructures. 2D plasmon resonance is first presented to demonstrate intense broadband terahertz emission from InGaP/InGaAs/GaAs material systems. The device structure is based on a high-electron mobility transistor and incorporates the author's original interdigitated dual-grating gates. The second topic focuses on graphene, a monolayer carbon-atomic honeycomb lattice crystal, exhibiting unique carrier transport and optical properties owing to the massless and gapless energy spectrum. Coherent stimulated terahertz emission from femtosecond infrared-laser pumped epitaxial graphene is experimentally observed, reflecting the occurrence of negative dynamic conductivity and population inversion.

[1]  V V Popov,et al.  Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Michael S. Shur,et al.  Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors , 2005 .

[3]  Yasuo Sambe,et al.  Far‐infrared emission from two‐dimensional plasmons in AlGaAs/GaAs heterointerfaces , 1986 .

[4]  T. Ando,et al.  Zone-Boundary Phonon in Graphene and Nanotube , 2008 .

[5]  S. A. Mikhailov Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems , 1998, cond-mat/9801045.

[6]  T. Otsuji,et al.  Application of plasmon-resonant microchip emitters to broadband terahertz spectroscopic measurement , 2009 .

[7]  Maki Suemitsu,et al.  Graphene formation on a 3C-SiC(111) thin film grown on Si(110) substrate , 2009 .

[8]  A. Jorio,et al.  Measuring the degree of stacking order in graphite by Raman spectroscopy , 2008 .

[9]  尾辻 泰一 Room temperature terahertz emission from grating coupled two-dimensional plasmons , 2008 .

[10]  Farhan Rana,et al.  Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. , 2008, Nano letters.

[11]  Hirokazu Fukidome,et al.  Epitaxial Growth Processes of Graphene on Silicon Substrates , 2010 .

[12]  David A. Ritchie,et al.  Plasmon excitation and self‐coupling in a bi‐periodically modulated two‐dimensional electron gas , 1992 .

[13]  Shur,et al.  Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. , 1993, Physical review letters.

[14]  Michael S. Shur,et al.  Plasma Instability and Terahertz Generation in HEMTs Due to Electron Transit-Time Effect , 2006, IEICE Trans. Electron..

[15]  M. Ryzhii,et al.  Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures , 2009, 0908.2488.

[16]  T. Ando Anomaly of Optical Phonon in Monolayer Graphene , 2006 .

[17]  D. Tsui,et al.  Far‐infrared emission spectroscopy of hot two‐dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions , 1995 .

[18]  T. Otsuji,et al.  Theoretical Evaluation of Channel Structure in Graphene Field-Effect Transistors , 2009 .

[19]  Mitsuhiro Hanabe,et al.  Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors , 2004 .

[20]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[21]  Erich Gornik,et al.  Cyclotron and plasmon emission from two-dimensional electrons in GaAs , 1982 .

[22]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[23]  Erich Gornik,et al.  Far infrared emission from plasma oscillations of Si inversion layers , 1980 .

[24]  T. Otsuji,et al.  A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure. , 2006, Optics express.

[25]  Eiichi Sano,et al.  Emission of terahertz radiation from InGaP/InGaAs/GaAs grating-bicoupled plasmon-resonant emitter , 2007 .

[26]  C. Gaquiere,et al.  AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources , 2010 .

[27]  L. Varani,et al.  Voltage tuneable terahertz emission from a ballistic nanometer InGaAs∕InAlAs transistor , 2005 .

[28]  Norman J. M. Horing,et al.  Anticrossing of plasmon resonances and giant enhancement of interlayer terahertz electric field in an asymmetric bilayer of two-dimensional electron strips , 2006 .

[29]  M. Suemitsu,et al.  Observation of carrier relaxation and recombination dynamics in optically pumped epitaxial graphene heterostructures using terahertz emission spectroscopy , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[30]  Theodore B Norris,et al.  Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. , 2008, Physical review letters.

[31]  Eiichi Sano,et al.  Room temperature terahertz emission from grating coupled two-dimensional plasmons , 2008 .

[32]  M. Shur,et al.  Mechanism of self-excitation of terahertz plasma oscillations in periodically double-gated electron channels , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  R. Miller,et al.  Subpicosecond reflective electro‐optic sampling of electron‐hole vertical transport in surface‐space‐charge fields , 1990 .

[34]  M. Potemski,et al.  Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study , 2007, 0709.2538.

[35]  Michael G. Spencer,et al.  Measurement of Ultrafast Carrier Dynamics in Epitaxial Graphene , 2008 .

[36]  Michael G. Spencer,et al.  Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene , 2009, 0901.0274.

[37]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[38]  Jiwoong Park,et al.  Ultrafast relaxation dynamics of hot optical phonons in graphene , 2009, 0909.4912.

[39]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[40]  Tobias Kampfrath,et al.  Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. , 2005, Physical review letters.

[41]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[42]  Federico Capasso,et al.  Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .

[43]  H. Handa,et al.  Raman-Scattering Spectroscopy of Epitaxial Graphene Formed on SiC Film on Si Substrate , 2009 .

[44]  Taiichi Otsuji,et al.  Population inversion of photoexcited electrons and holes in graphene and its negative terahertz conductivity , 2008 .

[45]  Erich Gornik,et al.  Thermal Excitation of Two-Dimensional Plasma Oscillations , 1982 .

[46]  Erich Gornik,et al.  PLASMON-BASED TERAHERTZ EMISSION FROM QUANTUM WELL STRUCTURES , 1999 .

[47]  David A. Ritchie,et al.  Terahertz quantum cascade lasers—first demonstration and novel concepts , 2005 .

[48]  M. Shur,et al.  Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors , 2004 .

[49]  尾辻 泰一 Negative dynamic conductivity of graphene with optical pumping , 2007 .

[50]  M. C. Martin,et al.  Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene , 2009, 0903.0577.

[51]  Alexander A. Dubinov,et al.  Terahertz Laser with Optically Pumped Graphene Layers and Fabri–Perot Resonator , 2009 .

[52]  Eiichi Sano,et al.  Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems , 2006 .

[53]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.