Triplet—Triplet Annihilation and Delayed Fluorescence in Molecular Aggregates

This paper deals with triplet—triplet annihilation in pure and mixed organic crystals. In crystals containing a small concentration of impurity traps, triplet excitation migration may proceed from trap to trap on a time scale which is short compared with the long triplet state lifetime but which is long compared with the normal fluorescence lifetime. Nearest‐neighbor and long‐range mutual annihilation of two triplets may then take place giving rise to delayed fluorescence. The rates of long‐range triplet excitation migration and annihilation show a concentration dependence, a temperature dependence, and a solvent dependence. Providing the triplet—triplet annihilation rate is not too fast, the intensity of the delayed fluorescence can be shown to depend upon the square of the intensity of the exciting light. This expectation is borne out by experiments, briefly reported here, on delayed fluorescence in dilute isotopic mixed crystals. In crystals containing high concentrations of such impurity traps, or in ...

[1]  G. W. Robinson,et al.  Electronic Excitation Transfer and Relaxation , 1963 .

[2]  G. W. Robinson,et al.  Theory of Electronic Energy Relaxation in the Solid Phase , 1962 .

[3]  G. C. Nieman,et al.  Rapid Triplet Excitation Migration in Organic Crystals , 1962 .

[4]  C. A. Hutchison,et al.  Electron Magnetic Resonance of Triplet States and the Detection of Energy Transfer in Crystals , 1962 .

[5]  G. W. Robinson,et al.  Retardation of singlet and triplet excitation migration in organic crystals by isotopic dilution , 1962 .

[6]  H. Mcconnell,et al.  Intramolecular Charge Transfer in Aromatic Free Radicals , 1961 .

[7]  G. Herzberg The Bakerian Lecture, The spectra and structures of free methyl and free methylene , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  D. Craig,et al.  The crystal spectra of very weak transitions: II. Theoretical , 1961 .

[9]  C. A. Hutchison,et al.  Effect of Deuterium Substitution on the Lifetime of the Phosphorescent Triplet State of Naphthalene , 1960 .

[10]  Lawrence A. Blackwell,et al.  Delayed Fluorescence in Naphthalene Crystals at 4°K , 1958 .

[11]  N. W. Blake,et al.  Delayed Singlet‐Singlet Emission from Molecular Crystals , 1958 .

[12]  William T. Simpson,et al.  Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids , 1957 .

[13]  D. McClure,et al.  Electronic States of the Naphthalene Crystal , 1955 .

[14]  D. Fox,et al.  Theory of the Lower Excited Electronic States of the Benzene Crystal , 1955 .

[15]  H. Olsen,et al.  Effect of Turbulence on Incipient Flame Propagation , 1955 .

[16]  C. C. J. Roothaan,et al.  A Study of Two‐Center Integrals Useful in Calculations on Molecular Structure. I , 1951 .

[17]  Robert G. Parr,et al.  Molecular Orbital Calculations of the Lower Excited Electronic Levels of Benzene, Configuration Interaction Included , 1950 .

[18]  K. Herzfeld On the Absorption Spectrum of Some Polymethine Dyes , 1942 .

[19]  G. Shortley,et al.  The Theory of Atomic Spectra , 1935 .

[20]  E. Hückel,et al.  Quantentheoretische Beiträge zum Problem der aromatischen und ungesättigten Verbindungen. III , 1932 .

[21]  G. W. Robinson,et al.  Spectra and energy transfer phenomena in crystalline rare gas solvents , 1961 .