Hierarchical and Overlapping Co-Clustering of mRNA: miRNA Interactions

microRNAs (miRNAs) are an important class of regulatory factors controlling gene expressions at post-transcriptional level. Studies on interactions between different miRNAs and their target genes are of utmost importance to understand the role of miRNAs in the control of biological processes. This paper contributes to these studies by proposing a method for the extraction of co-clusters of miRNAs and messenger RNAs (mRNAs). Different from several already available co-clustering algorithms, our approach efficiently extracts a set of possibly overlapping, exhaustive and hierarchically organized co-clusters. The algorithm is well-suited for the task at hand since: i) mRNAs and miRNAs can be involved in different regulatory networks that may or may not be co-active under some conditions, ii) exhaustive co-clusters guarantee that possible co-regulations are not lost, iii) hierarchical browsing of co-clusters facilitates biologists in the interpretation of results. Results on synthetic and on real human miRNA:mRNA data show the effectiveness of the approach.

[1]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[2]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[3]  Xiaowei Wang miRDB: a microRNA target prediction and functional annotation database with a wiki interface. , 2008, RNA.

[4]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[5]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[6]  Peter T Nelson,et al.  Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. , 2007, Molecular genetics and metabolism.

[7]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[8]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[9]  Q. Cui,et al.  Principles of microRNA regulation of a human cellular signaling network , 2006, Molecular systems biology.

[10]  Seungjin Choi,et al.  Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates on Stiefel manifolds , 2010, Inf. Process. Manag..

[11]  黄亚明 PubMed Central , 2009 .

[12]  Inderjit S. Dhillon,et al.  A scalable framework for discovering coherent co-clusters in noisy data , 2009, ICML '09.

[13]  Ping Jin,et al.  MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells , 2009, Journal of Translational Medicine.

[14]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[15]  Arkadiusz Wojna,et al.  RIONA: A Classifier Combining Rule Induction and k-NN Method with Automated Selection of Optimal Neighbourhood , 2002, ECML.

[16]  Luca Benini,et al.  Co-clustering: A Versatile Tool for Data Analysis in Biomedical Informatics , 2007, IEEE Transactions on Information Technology in Biomedicine.

[17]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[18]  S. Moon,et al.  Human embryonic stem cells express a unique set of microRNAs. , 2004, Developmental biology.

[19]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[20]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[21]  Ruggero G. Pensa,et al.  Ontology-Driven Co-clustering of Gene Expression Data , 2009, AI*IA.

[22]  Richard M. Karp,et al.  Discovering local structure in gene expression data: the order-preserving submatrix problem , 2002, RECOMB '02.

[23]  Robert L. Judson,et al.  Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells , 2011, Nature Biotechnology.

[24]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[25]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[26]  Samuel Kaski,et al.  Hierarchical Generative Biclustering for MicroRNA Expression Analysis , 2010, RECOMB.

[27]  Yi-Hsuan Chen,et al.  miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes , 2007, Nucleic Acids Res..

[28]  Daniel S Greenberg washington National Institutes of Health moves ahead with “PubMed Central” , 1999, The Lancet.

[29]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[30]  T. Tuschl,et al.  Identification of Tissue-Specific MicroRNAs from Mouse , 2002, Current Biology.