Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters

[1]  D. Gautheret,et al.  Zinc-mediated RNA fragmentation allows robust transcript reassembly upon whole transcriptome RNA-Seq. , 2013, Methods.

[2]  Ming Zhao,et al.  Transcriptomic profiling of Aspergillus flavus in response to 5-azacytidine. , 2013, Fungal genetics and biology : FG & B.

[3]  Michael T. McManus,et al.  Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs , 2013, PLoS genetics.

[4]  Michael Snyder,et al.  Extensive Transcript Diversity and Novel Upstream Open Reading Frame Regulation in Yeast , 2013, G3: Genes | Genomes | Genetics.

[5]  Evan R. Daugharthy,et al.  Pervasive antisense transcription is evolutionarily conserved in budding yeast. , 2013, Molecular biology and evolution.

[6]  Sean R. Eddy,et al.  Rfam 11.0: 10 years of RNA families , 2012, Nucleic Acids Res..

[7]  H. Menke,et al.  Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles , 2012, Studies in mycology.

[8]  M. Blythe,et al.  Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing , 2013, BMC Genomics.

[9]  J. Stajich,et al.  5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea , 2013, BMC Genomics.

[10]  E. Espeso,et al.  Transcriptional Changes in the Transition from Vegetative Cells to Asexual Development in the Model Fungus Aspergillus nidulans , 2012, Eukaryotic Cell.

[11]  A. Beauvais,et al.  The diverse applications of RNA‐seq for functional genomic studies in Aspergillus fumigatus , 2012, Annals of the New York Academy of Sciences.

[12]  Allan Jacobson,et al.  NMD: a multifaceted response to premature translational termination , 2012, Nature Reviews Molecular Cell Biology.

[13]  S. Liddell,et al.  Uncovering the Genome-Wide Transcriptional Responses of the Filamentous Fungus Aspergillus niger to Lignocellulose Using RNA Sequencing , 2012, PLoS genetics.

[14]  Johannes Freitag,et al.  Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi , 2012, Nature.

[15]  Jane E. Mabey Gilsenan,et al.  CADRE: the Central Aspergillus Data REpository 2012 , 2011, Nucleic Acids Res..

[16]  N. Peres,et al.  Transcription of Aspergillus nidulans pacC is modulated by alternative RNA splicing of palB , 2011, FEBS letters.

[17]  W. Nierman,et al.  Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq. , 2011, FEMS microbiology letters.

[18]  D. Muddiman,et al.  Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms , 2011, BMC Genomics.

[19]  M. Hyakumachi,et al.  Characteristics of Core Promoter Types with respect to Gene Structure and Expression in Arabidopsis thaliana , 2011, DNA research : an international journal for rapid publication of reports on genes and genomes.

[20]  Kriston L. McGary,et al.  Global Transcriptome Changes Underlying Colony Growth in the Opportunistic Human Pathogen Aspergillus fumigatus , 2011, Eukaryotic Cell.

[21]  Adrian Tsang,et al.  Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. , 2011, Genome research.

[22]  Piero Carninci,et al.  Genome-wide analysis of promoter architecture in Drosophila melanogaster. , 2011, Genome research.

[23]  N. Friedman,et al.  Strand-specific RNA sequencing reveals extensive regulated long antisense transcripts that are conserved across yeast species , 2010, Genome Biology.

[24]  B. Tudzynski,et al.  The bZIP Transcription Factor MeaB Mediates Nitrogen Metabolite Repression at Specific Loci , 2010, Eukaryotic Cell.

[25]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[26]  Guangwu Guo,et al.  Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing , 2010, Nucleic acids research.

[27]  Steffen Heber,et al.  Detection of alternative splice variants at the proteome level in Aspergillus flavus. , 2010, Journal of proteome research.

[28]  Marcus C. Chibucos,et al.  The Aspergillus Genome Database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community , 2009, Nucleic Acids Res..

[29]  Hui Zhou,et al.  SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights , 2009, BMC Genomics.

[30]  Seth M. Kelly,et al.  Messenger RNA Export from the Nucleus: A Series of Molecular Wardrobe Changes , 2009, Traffic.

[31]  C. Wahlestedt,et al.  Regulatory roles of natural antisense transcripts , 2009, Nature Reviews Molecular Cell Biology.

[32]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[33]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[34]  Bernard Henrissat,et al.  The 2008 update of the Aspergillus nidulans genome annotation: a community effort. , 2009, Fungal genetics and biology : FG & B.

[35]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[36]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[37]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  R. Dean,et al.  The effect of temperature on Natural Antisense Transcript (NAT) expression in Aspergillus flavus , 2008, Current Genetics.

[40]  Y. Hayashizaki,et al.  Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. , 2008, BioTechniques.

[41]  Jaideep P. Sundaram,et al.  Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus , 2008, PLoS genetics.

[42]  C. Scazzocchio,et al.  RNA Silencing Gene Truncation in the Filamentous Fungus Aspergillus nidulans , 2007, Eukaryotic Cell.

[43]  Guo‐Liang Wang,et al.  Robust analysis of 5′-transcript ends: a high-throughput protocol for characterization of sequence diversity of transcription start sites , 2007, Nature Protocols.

[44]  P. Stadler,et al.  RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription , 2007, Science.

[45]  Boris Lenhard,et al.  Mammalian RNA polymerase II core promoters: insights from genome-wide studies , 2007, Nature Reviews Genetics.

[46]  Piotr Borsuk,et al.  l-Arginine influences the structure and function of arginase mRNA in Aspergillus nidulans , 2007, Biological chemistry.

[47]  J. A. Roubos,et al.  Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 , 2007, Nature Biotechnology.

[48]  Martin S. Taylor,et al.  Genome-wide analysis of mammalian promoter architecture and evolution , 2006, Nature Genetics.

[49]  Wolfgang Huber,et al.  A high-resolution map of transcription in the yeast genome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  William H. Majoros,et al.  Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus , 2005, Nature.

[51]  K. Isono,et al.  Genome sequencing and analysis of Aspergillus oryzae , 2005, Nature.

[52]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[53]  S. Batalov,et al.  Antisense Transcription in the Mammalian Transcriptome , 2005, Science.

[54]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.

[55]  H. Sakurai,et al.  Identification of a Novel Class of Target Genes and a Novel Type of Binding Sequence of Heat Shock Transcription Factor in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[56]  C. Scazzocchio,et al.  Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. , 2004, Fungal genetics and biology : FG & B.

[57]  Sumio Sugano,et al.  5′-end SAGE for the analysis of transcriptional start sites , 2004, Nature Biotechnology.

[58]  Norman W. Paton,et al.  CADRE: the Central Aspergillus Data REpository. , 2004 .

[59]  Norman W. Paton,et al.  CADRE: the Central Aspergillus Data REpository , 2004, Nucleic Acids Res..

[60]  J. Kawai,et al.  Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Saurabh Sinha,et al.  YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation , 2003, Nucleic Acids Res..

[62]  G. Rubin,et al.  Computational analysis of core promoters in the Drosophila genome , 2002, Genome Biology.

[63]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[64]  Mathieu Blanchette,et al.  Separating real motifs from their artifacts , 2001, ISMB.

[65]  A Suyama,et al.  Diverse transcriptional initiation revealed by fine, large‐scale mapping of mRNA start sites , 2001, EMBO reports.

[66]  T. Tsunoda,et al.  Identification and characterization of the potential promoter regions of 1031 kinds of human genes. , 2001, Genome research.

[67]  J. Nielsen,et al.  Antisense Silencing of the creA Gene inAspergillus nidulans , 2000, Applied and Environmental Microbiology.

[68]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[69]  H. Lamb,et al.  Deletion of the 389 N-Terminal Residues of the Transcriptional Activator AREA Does Not Result in Nitrogen Metabolite Derepression in Aspergillus nidulans , 1998 .

[70]  C. Scazzocchio,et al.  Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter‐specific recognition by the Aspergillus nidulans GATA factor AreA , 1997, The EMBO journal.

[71]  S. Polley,et al.  Molecular characterisation of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans , 1996, FEBS letters.

[72]  D. Tollervey,et al.  Nitrogen metabolite signalling involves the C‐terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. , 1996, The EMBO journal.

[73]  J. Aguirre,et al.  Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. , 1995, Microbiology.

[74]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.

[75]  J. Kelly,et al.  Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans , 1993, Molecular microbiology.

[76]  R. Kaldenhoff,et al.  Fast and reliable mini-prep RNA extraction from Neurospora crassa , 1990 .

[77]  D. Ballance Sequences important for gene expression in filamentous fungi , 1986, Yeast.

[78]  H. Arst,et al.  Cloning of the regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. , 1986, The EMBO journal.

[79]  D. Cove The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. , 1966, Biochimica et biophysica acta.

[80]  L. Packer,et al.  Pathways of electron flow established by tetramethylphenylenediamine in mitochondria and ascites tumor cells. , 1966, Biochimica et biophysica acta.

[81]  K. D. Macdonald,et al.  The genetics of Aspergillus nidulans. , 1953, Advances in genetics.