Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches’ knowledge production function: a mixed GWR approach

Griliches’ knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors’ previous work (Kang and Dall’erba in Int Reg Sci Rev, 2015. doi:10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county’s innovation capacity and suggest policy implications for regional innovation strategies.

[1]  Wanxin Liu,et al.  The role of proximity to universities for corporate patenting: provincial evidence from China , 2013 .

[2]  M. Storper Regional ‘Worlds’ of Production: Learning and Innovation in the Technology Districts of France, Italy and the USA , 1993 .

[3]  M. Fung,et al.  Measuring the intensity of knowledge flow with patent statistics , 2002 .

[4]  L. Anselin,et al.  Patents and innovation counts as measures of regional production of new knowledge , 2002 .

[5]  Martin Charlton,et al.  Multiple Dependent Hypothesis Tests inGeographically Weighted Regression , 2009 .

[6]  Manfred M. Fischer,et al.  The Geography of Knowledge Spillovers between High-Technology Firms in Europe - Evidence from a Spatial Interaction Modelling Perspective , 2006 .

[7]  Kevin Morgan,et al.  The Regional Innovation Paradox: Innovation Policy and Industrial Policy , 2002 .

[8]  J. LeSage,et al.  Quantifying Knowledge Spillovers Using Spatial Econometric Models , 2009 .

[9]  Giovanni Peri,et al.  Determinants of Knowledge Flows and Their Effect on Innovation , 2005, Review of Economics and Statistics.

[10]  Martin Charlton,et al.  GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models , 2013, 1306.0413.

[11]  D. McMillen,et al.  Issues in Spatial Data Analysis , 2010 .

[12]  Mario A. Maggioni,et al.  Treating Patents as Relational Data: Knowledge Transfers and Spillovers across Italian Provinces , 2011 .

[13]  Olivier Parent,et al.  A space-time analysis of knowledge production , 2012, J. Geogr. Syst..

[14]  Daniel A. Levinthal,et al.  ABSORPTIVE CAPACITY: A NEW PERSPECTIVE ON LEARNING AND INNOVATION , 1990 .

[15]  Corinne Autant-Bernard,et al.  Spatial Econometrics of Innovation: Recent Contributions and Research Perspectives , 2011 .

[16]  F. Lissoni,et al.  University Research and Public–Private Interaction , 2010 .

[17]  M. Feldman,et al.  R&D spillovers and the ge-ography of innovation and production , 1996 .

[18]  Steven Farber,et al.  A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships , 2011 .

[19]  A. Jaffe Real Effects of Academic Research , 1989 .

[20]  Roger R. Stough,et al.  Strategic management of places and policy , 2003 .

[21]  R. Florida Toward the Learning Region , 1995 .

[22]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[23]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[24]  J. Jacobs,et al.  The Economy of Cities , 1969 .

[25]  Barry Moore,et al.  Collective Learning Processes, Networking and 'Institutional Thickness' in the Cambridge Region , 1999 .

[26]  E. Lorenz,et al.  Trust, Community and Cooperation: Toward a Theory of Industrial Districts , 1992 .

[27]  Sandy Dall’erba,et al.  An Examination of the Role of Local and Distant Knowledge Spillovers on the US Regional Knowledge Creation , 2016 .

[28]  K. Morgan The Learning Region: Institutions, Innovation and Regional Renewal , 1997 .

[29]  P. Romer Increasing Returns and Long-Run Growth , 1986, Journal of Political Economy.

[30]  Kamar Ali,et al.  The Geographic Diversity of U.S. Nonmetropolitan Growth Dynamics: A Geographically Weighted Regression Approach , 2008, Land Economics.

[31]  Richard D. F. Harris,et al.  Models of Regional Growth: Past, Present and Future , 2011 .

[32]  M. Feldman,et al.  Innovation in Cities: Science-Based Diversity, Specialization and Localized Competition , 1999 .

[33]  K. Frenken,et al.  Innovation, spillovers, and university-industry collaboration: An extended knowledge production function approach , 2010 .

[34]  James P. LeSage,et al.  A spatial econometric panel data examination of endogenous versus exogenous interaction in Chinese province-level patenting , 2014, J. Geogr. Syst..

[35]  E. Glaeser,et al.  Growth in Cities , 1991, Journal of Political Economy.

[36]  P. David Why are institutions the ‘carriers of history’?: Path dependence and the evolution of conventions, organizations and institutions , 1994 .

[37]  Attila Varga,et al.  Local Geographic Spillovers between University Research and High Technology Innovations , 1997 .

[38]  F. Tödtling,et al.  Knowledge Sourcing Beyond Buzz and Pipelines: Evidence from the Vienna Software Sector , 2009 .

[39]  Manfred M. Fischer,et al.  Systems of Innovation: An Attractive Conceptual Framework for Comparative Innovation Research , 2001 .

[40]  Timothy F. Leslie,et al.  Rethinking the Regional Knowledge Production Function , 2007 .

[41]  Olivier Parent,et al.  Using the Variance Structure of the Conditional Autoregressive Spatial Specification to Model Knowledge Spillovers , 2006 .

[42]  Zvi Griliches,et al.  Issues in Assessing the Contribution of Research and Development to Productivity Growth , 1979 .

[43]  D. McMillen,et al.  Estimation and Hypothesis Testing for Nonparametric Hedonic House Price Functions , 2010 .

[44]  P. Cooke,et al.  Regional innovation systems: Institutional and organisational dimensions , 1997 .

[45]  S. Fotheringham,et al.  Geographically weighted regression : modelling spatial non-stationarity , 1998 .

[46]  Michael Fritsch,et al.  Regionalization of Innovation Policy : Introduction to the special issue , 2005 .

[47]  A. Stewart Fotheringham,et al.  Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity , 2010 .

[48]  Meric S. Gertler,et al.  Local Nodes in Global Networks: The Geography of Knowledge Flows in Biotechnology Innovation , 2005 .

[49]  E. Mansfield Academic Research Underlying Industrial Innovations , 1995 .

[50]  David Wheeler,et al.  Multicollinearity and correlation among local regression coefficients in geographically weighted regression , 2005, J. Geogr. Syst..

[51]  K. Arrow The Economic Implications of Learning by Doing , 1962 .

[52]  Björn Asheim,et al.  Industrial districts as ‘learning regions’. A condition for prosperity? , 1996 .

[53]  Z. Ács,et al.  Employment Growth and Entrepreneurial Activity in Cities , 2004 .

[54]  Jan Schnellenbach,et al.  What do we know about geographical knowledge spillovers and regional growth?: A survey of the literature , 2006 .

[55]  Wen-Xiu Zhang,et al.  Testing the Importance of the Explanatory Variables in a Mixed Geographically Weighted Regression Model , 2006 .

[56]  Lori Rosenkopf,et al.  Overcoming Local Search Through Alliances and Mobility , 2003, Manag. Sci..

[57]  Bart Verspagen,et al.  The Spatial Dimension of Patenting by Multinational Firms in Europe , 2002 .

[58]  Chuan-hua Wei,et al.  On the estimation and testing of mixed geographically weighted regression models , 2012 .

[59]  Zvi Griliches,et al.  The Search for R&D Spillovers , 1992 .

[60]  B. Asheim,et al.  Regional Innovation Systems: The Integration of Local ‘Sticky’ and Global ‘Ubiquitous’ Knowledge , 2002 .

[61]  A. Jaffe Technological Opportunity and Spillovers of R&D: Evidence from Firms&Apos; Patents, Profits and Market Value , 1986 .

[62]  J. Zysman How Institutions Create Historically Rooted Trajectories of Growth , 1994 .

[63]  Maryann P. Feldman,et al.  Stylized Facts in the Geography of Innovation , 2010 .

[64]  Attila Varga,et al.  Geographical Spillovers and University Research: A Spatial EconometricPerspective , 2000 .

[65]  A. Marshall Principles of Economics , .

[66]  Fernando Tusell,et al.  Alleviating the effect of collinearity in geographically weighted regression , 2014, J. Geogr. Syst..

[67]  J. Henderson,et al.  Marshall's scale economies , 2001 .

[68]  Bart Verspagen,et al.  Knowledge Spillovers in Europe: A Patent Citations Analysis , 2002 .

[69]  J. Elhorst,et al.  The Slx Model , 2015 .

[70]  Z. Griliches The Search for R&D Spillovers , 1991 .

[71]  Nivedita Mukherji,et al.  Absorptive Capacity, Knowledge Flows, and Innovation in U.S. Metropolitan Areas , 2013 .

[72]  K. Arrow The Economic Implications of Learning by Doing , 1962 .

[73]  Roberta Capello,et al.  Spatial Heterogeneity in Knowledge, Innovation, and Economic Growth Nexus: Conceptual Reflections and Empirical Evidence , 2014 .

[74]  G. Duranton,et al.  Diversity and Specialisation in Cities: Why, Where and When Does it Matter? , 1999 .

[75]  M. Feldman,et al.  Knowledge spillovers and the geography of innovation , 2004 .

[76]  Ronald P. Barry,et al.  Spatiotemporal Autoregressive Models of Neighborhood Effects , 1998 .

[77]  Martin Charlton,et al.  Geographically weighted regression with a non-Euclidean distance metric: a case study using hedonic house price data , 2014, Int. J. Geogr. Inf. Sci..

[78]  Rosina Moreno,et al.  A Relational Approach to the Geography of Innovation: A Typology of Regions , 2012 .

[79]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[80]  Ajay Agrawal,et al.  Not Invented Here? Innovation in Company Towns , 2009 .

[81]  Manfred M. Fischer,et al.  Metropolitan Innovation Systems , 2001 .

[82]  Eckhardt Bode,et al.  The spatial pattern of localized R&D spillovers: an empirical investigation for Germany , 2004 .

[83]  M. Storper The Regional World: Territorial Development in a Global Economy , 1997 .

[84]  Chris Brunsdon,et al.  Geographically Weighted Regression: The Analysis of Spatially Varying Relationships , 2002 .

[85]  Steven Farber,et al.  A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations , 2007, J. Geogr. Syst..

[86]  S. Fotheringham,et al.  Geographically Weighted Regression , 1998 .

[87]  Ian R. Gordon,et al.  Unemployment in the British Metropolitan Labour Areas , 1981 .

[88]  Maryann P. Feldman,et al.  R&D spillovers and recipient firm size , 1994 .

[89]  Richard Florida,et al.  The Learning Region , 2002 .

[90]  Meric S. Gertler,et al.  The Geography of Innovation: Regional Innovation Systems , 2006 .

[91]  Martin Charlton,et al.  The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models , 2013, Geo spatial Inf. Sci..