Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural using ALD overcoating

[1]  David H. K. Jackson,et al.  Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. , 2013, Angewandte Chemie.

[2]  N. Bertero,et al.  Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts , 2013 .

[3]  Jun Lu,et al.  A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries , 2013, Nature Communications.

[4]  Dean J. Miller,et al.  Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. , 2013, Nano letters.

[5]  J. Elam,et al.  Synthesis and stabilization of supported metal catalysts by atomic layer deposition. , 2013, Accounts of chemical research.

[6]  J. Dumesic,et al.  Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde , 2013 .

[7]  Bin Liu,et al.  Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition , 2012 .

[8]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[9]  F. Ribeiro,et al.  Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3. , 2012, Physical chemistry chemical physics : PCCP.

[10]  Peter J. Krommenhoek,et al.  Coating alumina on catalytic iron oxide nanoparticles for synthesizing vertically aligned carbon nanotube arrays. , 2011, ACS applied materials & interfaces.

[11]  A. Datye,et al.  Synthesis of Highly Ordered Hydrothermally Stable Mesoporous Niobia Catalysts by Atomic Layer Deposition , 2011 .

[12]  J. Falconer,et al.  Stabilization of Supported Metal Nanoparticles Using an Ultrathin Porous Shell , 2011 .

[13]  D. Resasco,et al.  Hydrodeoxygenation of Furfural Over Supported Metal Catalysts: A Comparative Study of Cu, Pd and Ni , 2011 .

[14]  Yuguang Ma,et al.  Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts , 2011 .

[15]  F. Wei,et al.  Enhanced catalytic activity of sub-nanometer titania clusters confined inside double-wall carbon nanotubes. , 2010, ChemSusChem.

[16]  D. M. Alonso,et al.  Catalytic conversion of biomass to biofuels , 2010 .

[17]  Jean-Paul Lange,et al.  Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. , 2009, ChemSusChem.

[18]  M. Engelhard,et al.  Characterization of CeO2-supported Cu–Pd bimetallic catalyst for the oxygen-assisted water–gas shift reaction , 2008 .

[19]  M. Boronat,et al.  Origin of chemoselective behavior of S-covered Cu(1 1 1) towards catalytic hydrogenation of unsaturated aldehydes , 2008 .

[20]  J. Elam,et al.  Conformal ZnO coatings on high surface area silica gel using atomic layer deposition , 2008 .

[21]  K. R. Rao,et al.  Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts , 2007 .

[22]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[23]  Hongwei Xiang,et al.  Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran , 2006 .

[24]  A. J. Kropf,et al.  Studies of Cu-ZSM-5 by X-ray absorption spectroscopy and its application for the oxidation of benzene to phenol by air , 2005 .

[25]  C. Marshall,et al.  Coated bifunctional catalysts for NOx SCR with C3H6: Part II. In situ spectroscopic characterization , 2004 .

[26]  R. Rioux,et al.  Hydrogenation/dehydrogenation reactions: isopropanol dehydrogenation over copper catalysts , 2003 .

[27]  Steven M. George,et al.  Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition , 2002 .

[28]  A. J. Kropf,et al.  In situ EXAFS analysis of the temperature-programmed reduction of Cu-ZSM-5. , 2002, Journal of the American Chemical Society.

[29]  S. George,et al.  Atomic Layer Deposition of SiO2 Films on BN Particles Using Sequential Surface Reactions , 2000 .

[30]  A. Davydov,et al.  Dehydrogenation of Cyclohexanol on Copper-Containing Catalysts: I. The Influence of the Oxidation State of Copper on the Activity of Copper Sites , 2000 .

[31]  R. Baker,et al.  Furfural hydrogenation over carbon‐supported copper , 1999 .

[32]  R. Baker,et al.  Carbon-supported copper catalysts. II. Crotonaldehyde hydrogenation , 1999 .

[33]  X. Correig,et al.  Preparation and Study of Cu−Al Mixed Oxides via Hydrotalcite-like Precursors , 1999 .

[34]  J. Fierro,et al.  Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4and CuCr2O4Spinel Type Catalysts , 1998 .

[35]  R. Baker,et al.  Properties of Copper Chromite Catalysts in Hydrogenation Reactions , 1997 .

[36]  J. Rehr,et al.  TI K-EDGE XANES STUDIES OF TI COORDINATION AND DISORDER IN OXIDE COMPOUNDS: COMPARISON BETWEEN THEORY AND EXPERIMENT , 1997 .

[37]  Tsunehiro Tanaka,et al.  NO Reduction with CO in the Presence of O2 over Cu/Al2O3 (3) – Structural Analysis of Active Species by Means of XAFS and UV/VIS/NIR Spectroscopy , 2002 .

[38]  End Use Annual energy review , 1984 .

[39]  C. L. Thomas,et al.  Catalytic processes and proven catalysts , 1970 .