Natural Composite Systems for Bioinspired Materials.

From a relatively limited selection of base materials, nature has steered the development of truly remarkable materials. The simplest and often overlooked organisms have demonstrated the ability to manufacture multi-faceted, molecular-level hierarchical structures that combine mechanical properties rarely seen in synthetic materials. Indeed, these natural composite systems, composed of an array of intricately arranged and functionally relevant organic and inorganic substances serve as inspiration for materials design. A better understanding of these composite systems, specifically at the interface of the hetero-assemblies, would encourage faster development of environmentally friendly "green" materials with molecular level specificities.

[1]  T. Asakura,et al.  Conformational study of silklike peptides modified by the addition of the calcium-binding sequence from the shell nacreous matrix protein MSI60 using 13C CP/MAS NMR spectroscopy. , 2006, Biomacromolecules.

[2]  Steven A Herrera,et al.  The Stomatopod Dactyl Club: A Formidable Damage-Tolerant Biological Hammer , 2012, Science.

[3]  H. Nagasawa,et al.  Mollusk shell structures and their formation mechanism1 , 2013 .

[4]  Andreas Walther,et al.  Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. , 2011, Angewandte Chemie.

[5]  V. Shastri,et al.  Influence of surface charge and protein intermediary layer on the formation of biomimetic calcium phosphate on silica nanoparticles , 2012 .

[6]  J. Evans,et al.  Formation of framework nacre polypeptide supramolecular assemblies that nucleate polymorphs. , 2011, Biomacromolecules.

[7]  Z. Shao,et al.  The Intrinsic Ability of Silk Fibroin to Direct the Formation of Diverse Aragonite Aggregates , 2012 .

[8]  Frédéric Marin,et al.  Molluscan shell proteins , 2004 .

[9]  M. Wheatly,et al.  Calcium homeostasis in crustaceans: subcellular Ca dynamics. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  F. Marin,et al.  Biomineralisations in crustaceans: storage strategies , 2004 .

[11]  Jelena Rnjak-Kovacina,et al.  Highly Tunable Elastomeric Silk Biomaterials , 2014, Advanced functional materials.

[12]  Steven A Herrera,et al.  Crustacean-derived biomimetic components and nanostructured composites. , 2014, Small.

[13]  T. H. Shafer,et al.  Four differentially expressed cDNAs in Callinectes sapidus containing the Rebers-Riddiford consensus sequence. , 2005, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[14]  J. Evans,et al.  Silk Fibroin Hydrogels Coupled with the n16N−β-Chitin Complex: An in Vitro Organic Matrix for Controlling Calcium Carbonate Mineralization , 2010 .

[15]  J. Evans,et al.  Structure-Function Studies of the Lustrin A Polyelectrolyte Domains, RKSY and D4 , 2003, Connective tissue research.

[16]  André R Studart,et al.  Towards High‐Performance Bioinspired Composites , 2012, Advanced materials.

[17]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[18]  Xiaodong Li,et al.  Origin of flaw-tolerance in nacre , 2013, Scientific Reports.

[19]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[20]  N. Sommerdijk,et al.  Biomimetic CaCO3 mineralization using designer molecules and interfaces. , 2008, Chemical reviews.

[21]  Dierk Raabe,et al.  Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus , 2006 .

[22]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[23]  M. Muthukumar,et al.  Artificial Protein Block Copolymers Blocks Comprising Two Distinct Self‐Assembling Domains , 2009, Chembiochem : a European journal of chemical biology.

[24]  J. Eric Hillerton,et al.  Cuticle: Mechanical Properties , 1984 .

[25]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[26]  Eric W. Roth,et al.  Supramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs. , 2010, Molecular bioSystems.

[27]  P. Fratzl,et al.  Microtexture and Chitin/Calcite Orientation Relationship in the Mineralized Exoskeleton of the American Lobster , 2008 .

[28]  F. Wilt Developmental biology meets materials science: Morphogenesis of biomineralized structures. , 2005, Developmental biology.

[29]  P. Laaksonen,et al.  Self-assembly of cellulose nanofibrils by genetically engineered fusion proteins , 2011 .

[30]  M. Fritz,et al.  The nacre protein perlucin nucleates growth of calcium carbonate crystals , 2003, Journal of microscopy.

[31]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[32]  M. Fritz,et al.  Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. , 2000, Biochemical and biophysical research communications.

[33]  A. Fitch,et al.  Incorporation of a Recombinant Biomineralization Fusion Protein into the Crystalline Lattice of Calcite , 2014 .

[34]  I. Sarashina,et al.  In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein , 2008, FEBS letters.

[35]  A. Beran,et al.  Molluscan shell evolution with review of shell calcification hypothesis. , 2009, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[36]  E. J. Foster,et al.  Bionanocomposites: differential effects of cellulose nanocrystals on protein diblock copolymers. , 2013, Biomacromolecules.

[37]  M A Meyers,et al.  Structure and mechanical properties of selected biological materials. , 2008, Journal of the mechanical behavior of biomedical materials.

[38]  S. Weiner,et al.  Mollusk Shell Acidic Proteins: In Search of Individual Functions , 2003, Chembiochem : a European journal of chemical biology.

[39]  X. Bourrat,et al.  A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system. , 2013, Materials science & engineering. C, Materials for biological applications.

[40]  J. Willis,et al.  A conserved domain in arthropod cuticular proteins binds chitin. , 2001, Insect biochemistry and molecular biology.

[41]  J. Cartwright,et al.  The dynamics of nacre self-assembly , 2007, Journal of The Royal Society Interface.

[42]  Marc A. Meyers,et al.  Biological materials: Functional adaptations and bioinspired designs , 2012 .

[43]  B. Welinder The crustacean cuticle--III. Composition of the individual layers in Cancer pagurus cuticle. , 1975, Comparative biochemistry and physiology. A, Comparative physiology.

[44]  T. Fujikawa,et al.  Structures of mollusc shell framework proteins , 1997, Nature.

[45]  I. Zanella-Cléon,et al.  Pmarg‐Pearlin is a Matrix Protein Involved in Nacre Framework Formation in the Pearl Oyster Pinctada margaritifera , 2011, Chembiochem : a European journal of chemical biology.

[46]  Himadri S. Gupta,et al.  Deformation and Fracture Mechanisms of Bone and Nacre , 2011 .

[47]  Nan Yao,et al.  Organic–inorganic interfaces and spiral growth in nacre , 2008, Journal of The Royal Society Interface.

[48]  M. Giraud‐Guille Fine structure of the chitin-protein system in the crab cuticle. , 1984, Tissue & cell.

[49]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[50]  Liyun Wang,et al.  Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior , 2008 .

[51]  Steven A Herrera,et al.  Bio-inspired impact-resistant composites. , 2014, Acta biomaterialia.

[52]  David L. Kaplan,et al.  Protein-based composite materials , 2012 .

[53]  Gervaise Mosser,et al.  Organic and mineral networks in carapaces, bones and biomimetic materials , 2004 .

[54]  Bharat Bhushan,et al.  Hierarchical structure and mechanical properties of nacre: a review , 2012 .

[55]  S. Franken,et al.  Splice Variants of Perlucin from Haliotis laevigata Modulate the Crystallisation of CaCO3 , 2014, PloS one.

[56]  D. Kaplan,et al.  Biomimetic composites via molecular scale self-assembly and biomineralization , 2003 .

[57]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[58]  Steven G Wise,et al.  Elastin-based materials. , 2010, Chemical Society reviews.

[59]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[60]  D. Raabe,et al.  Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. , 2008, Journal of structural biology.

[61]  H. Nagasawa,et al.  Cloning and expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[62]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[63]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[64]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[65]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[66]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[67]  Takashi Kato,et al.  Effects of macromolecules on the crystallization of CaCO3 the Formation of Organic/Inorganic Composites , 1998 .

[68]  S. Weiner,et al.  Biomineralization: mineral formation by organisms , 2014 .

[69]  Yasuaki Seki,et al.  Biological materials: a materials science approach. , 2011, Journal of the mechanical behavior of biomedical materials.

[70]  Jon A. Preece,et al.  Nanotechnology: The “Top‐Down” and “Bottom‐Up” Approaches , 2012 .

[71]  D. Kaplan,et al.  Biomineralization regulation by nano-sized features in silk fibroin proteins: synthesis of water-dispersible nano-hydroxyapatite. , 2014, Journal of biomedical materials research. Part B, Applied biomaterials.

[72]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[73]  Markus B Linder,et al.  Genetic engineering in biomimetic composites. , 2012, Trends in biotechnology.

[74]  P. Aspenberg,et al.  Where did bone come from? , 2011, Acta orthopaedica.

[75]  M. Meyers,et al.  Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre. , 2014, Acta biomaterialia.

[76]  Marc A. Meyers,et al.  Growth and structure in abalone shell , 2005 .

[77]  J. Kunkel,et al.  Mineral Fine Structure of the American Lobster Cuticle , 2012 .

[78]  S. O. Andersen Exoskeletal proteins from the crab, Cancer pagurus. , 1999, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[79]  H. Nagasawa,et al.  Self-organization of oriented calcium carbonate/polymer composites: effects of a matrix peptide isolated from the exoskeleton of a crayfish. , 2006, Angewandte Chemie.

[80]  J. Evans,et al.  Molecular “Tuning” of Crystal Growth by Nacre-Associated Polypeptides , 2006 .

[81]  T. Samata,et al.  Molecular mechanism of the nacreous layer formation in Pinctada maxima. , 2000, Biochemical and biophysical research communications.

[82]  Thierry Lefèvre,et al.  Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. , 2007, Biophysical journal.

[83]  R. Dillaman,et al.  The Structure and Calcification of the Crustacean Cuticle , 1984 .

[84]  Baohua Ji,et al.  On the strength of β-sheet crystallites of Bombyx mori silk fibroin , 2014, Journal of The Royal Society Interface.

[85]  D. Raabe,et al.  Preferred crystallographic texture of alpha-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. , 2007, Acta biomaterialia.

[86]  O. Marti,et al.  Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. , 2008, Journal of structural biology.

[87]  J. Evans,et al.  AP7, a partially disordered pseudo C-RING protein, is capable of forming stabilized aragonite in vitro. , 2009, Biochemistry.

[88]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[89]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[90]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[91]  H. Nagasawa,et al.  Significance of the N- and C-terminal regions of CAP-1, a cuticle calcification-associated peptide from the exoskeleton of the crayfish, for calcification , 2007, Peptides.

[92]  M. Meyers,et al.  Growth of nacre in abalone: Seasonal and feeding effects , 2011 .

[93]  M. McCartney,et al.  Identifying exoskeleton proteins in the blue crab from an expressed sequence tag (EST) library. , 2006, Integrative and comparative biology.

[94]  I. Khalaila,et al.  A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix , 2008, Proceedings of the National Academy of Sciences.

[95]  M. Meyers,et al.  Interfacial shear strength in abalone nacre. , 2009, Journal of the mechanical behavior of biomedical materials.

[96]  Lei Jiang,et al.  Bio‐Inspired, Smart, Multiscale Interfacial Materials , 2008 .

[97]  Lihui Weng,et al.  Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. , 2004, Biomacromolecules.

[98]  A. Khalil,et al.  Circular mesostructures: solids with novel symmetry properties , 2007 .

[99]  John Spencer Evans,et al.  Aragonite-associated biomineralization proteins are disordered and contain interactive motifs , 2012, Bioinform..

[100]  J. Evans,et al.  A C-RING-like domain participates in protein self-assembly and mineral nucleation. , 2011, Biochemistry.

[101]  Shuguang Zhang Building from the bottom up , 2003 .

[102]  D. Kaplan,et al.  Clues for biomimetics from natural composite materials. , 2012, Nanomedicine.

[103]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[104]  D. Green,et al.  In situ continuous growth formation of synthetic biominerals. , 2013, Chemical communications.

[105]  J. Evans,et al.  Nacre Protein Sequence Compartmentalizes Mineral Polymorphs in Solution , 2014 .

[106]  S. O. Andersen Characterization of proteins from arthrodial membranes of the lobster, Homarus americanus. , 1998, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[107]  H. Nagasawa,et al.  A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii. , 2004, Biochemical and biophysical research communications.

[108]  Eric W. Roth,et al.  Artificial protein block polymer libraries bearing two SADs: effects of elastin domain repeats. , 2011, Biomacromolecules.