Doubly Adaptive Quadrature Routines Based on Newton–Cotes Rules
暂无分享,去创建一个
[1] W. M. McKeeman,et al. Algorithm 145: Adaptive numerical integration by Simpson's rule , 1962, Communications of the ACM.
[2] J. N. Lyness. Symmetric Integration Rules for Hypercubes III. Construction of Integration Rules Using Null Rules , 1965 .
[3] H. Keller,et al. Analysis of Numerical Methods , 1969 .
[4] Paul Van Dooren,et al. An adaptive algorithm for numerical integration over the n-cube , 1976 .
[5] James N. Lyness,et al. Comments on the Nature of Automatic Quadrature Routines , 1976, TOMS.
[6] James N. Lyness,et al. A Technique for Comparing Automatic Quadrature Routines , 1977, Comput. J..
[7] Alan Genz,et al. An adaptive algorithm for numerical integration over an n-dimensional rectangular region , 1980 .
[8] Terje O. Espelid,et al. A discussion of a new error estimate for adaptive quadrature , 1989 .
[9] Terje O. Espelid,et al. An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.
[10] Terje O. Espelid,et al. Error estimation in automatic quadrature routines , 1991, TOMS.
[11] Ronald Cools,et al. Cubpack: Progress Report , 1992 .
[12] Terje O. Espelid. DQAINT: An Algorithm for Adaptive Quadrature Over a Collection of Finite Intervals , 1992 .
[13] W. Gander,et al. Adaptive Quadrature—Revisited , 2000 .
[14] G. Reina,et al. Algorithm 36 SNIFF: Efficient self-tuning algorithm for numerical integration , 1978, Computing.