Study of the Temperature-Programmed Desorption of Carbon Dioxide (CO2) on Zeolites X Modified with Bivalent Cations

[1]  A. Zanj,et al.  A Review on the Challenges of Using Zeolite 13X as Heat Storage Systems for the Residential Sector , 2021, Energies.

[2]  E. Kondratenko,et al.  Factors affecting primary and secondary pathways in CO2 hydrogenation to methanol over CuZnIn/MZrOx (La, Ti or Y) , 2021 .

[3]  C. Mfoumou,et al.  The preferential adsorption sites of H2O on adsorption sites of CO2 at low temperature onto NaX and BaX zeolites , 2018 .

[4]  Mohammad R.M. Abu-Zahra,et al.  Novel Green Solvents for CO2 Capture , 2017 .

[5]  T. Tomita,et al.  Gas Separation Process for CO2 Removal from Natural Gas with DDR-type Zeolite Membrane , 2017 .

[6]  Majid Vafaeezadeh,et al.  Efficient and reversible CO2 capture by amine functionalized-silica gel confined task-specific ionic liquid system , 2014, Journal of advanced research.

[7]  Changsui Zhao,et al.  Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent , 2013 .

[8]  Y. Pouilloux,et al.  Study of physisorbed carbon dioxide on zeolites modified by addition of oxides or acetate impregnation , 2013 .

[9]  Stefano Brandani,et al.  Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite Rho at conditions relevant to carbon capture from flue gases. , 2012, Journal of the American Chemical Society.

[10]  J. I. D. Cosimo,et al.  Effect of MgO activation conditions on its catalytic properties for base-catalyzed reactions , 2011 .

[11]  P. Magnoux,et al.  Microcalorimetric and thermodynamic studies of CO2 and methanol adsorption on magnesium oxide , 2011 .

[12]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[13]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[14]  K. Hadjiivanov,et al.  Characterization of vacant coordination sites of cations on the surfaces of oxides and zeolites using infrared spectroscopy of adsorbed probe molecules , 2009 .

[15]  Y. Erten,et al.  CO2 adsorption and dehydration behavior of LiNaX, KNaX, CaNaX and CeNaX zeolites , 2008 .

[16]  J. Schott,et al.  Effect of the binary and ternary exchanges on crystallinity and textural properties of X zeolites , 2008 .

[17]  S. Ordóñez,et al.  Enhancement of the CO(2) retention capacity of X zeolites by Na- and Cs-treatments. , 2008, Chemosphere.

[18]  M. Kharoune,et al.  Advances in principal factors influencing carbon dioxide adsorption on zeolites , 2008, Science and technology of advanced materials.

[19]  M. Douglas LeVan,et al.  CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange , 2006 .

[20]  D. Caputo,et al.  Synthesis of mesoporous materials for carbon dioxide sequestration , 2005 .

[21]  Z. Derriche,et al.  Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat. , 2004, Journal of colloid and interface science.

[22]  A. Jiménez-lópez,et al.  Adsorption Kinetics of CO 2 , O 2 , N 2 , and CH 4 in Cation-Exchanged Clinoptilolite , 2001 .

[23]  Antonio Monzón,et al.  Deactivation model with residual activity to study thioresistance and thiotolerance of naphtha reforming catalysts , 1994 .

[24]  S. B. Kulkarni,et al.  The influence of the size and concentration of alkaline earth ions on the structural and sorption properties of faujasites , 1984 .

[25]  Andrea Giordano,et al.  CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. , 2011 .