Dual-Readout Calorimetry for Future Experiments Probing Fundamental Physics
暂无分享,去创建一个
F. Bedeschi | S. Giagu | A. Belloni | R. Ferrari | G. Gaudio | G. Polesello | J. Qian | I. Vivarelli | J. Lee | H. Newman | J. Hirschauer | C. Tully | H. Yoo | N. Akchurin | R. Hirosky | M. Lucchini | J. Freeman | R. Santoro | S. Eno | A. Jung | J. Zhu | Ittalo Francisco Francisco Pezzotti Escobar | Sehwook Lee | B. Zhou | I. Pezzotti | J. Qian | H. Newman
[1] A. Andreazza,et al. Characterisation of HV-MAPS ATLASPix3 and its applications for future lepton colliders , 2022, Journal of Instrumentation.
[2] M. Lucchini. Combining Dual-Readout Crystals and Fibers in a Hybrid Calorimeter for the IDEA Experiment , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).
[3] G. Polesello,et al. Particle flow with a hybrid segmented crystal and fiber dual-readout calorimeter , 2022, Journal of Instrumentation.
[4] F. Bedeschi,et al. Calorimetry at FCC-ee , 2021, The European Physical Journal Plus.
[5] C. Cowden,et al. On the use of neural networks for energy reconstruction in high-granularity calorimeters , 2021, Journal of Instrumentation.
[6] P. Azzi,et al. Exploring requirements and detector solutions for FCC-ee , 2021, The European Physical Journal Plus.
[7] G. Tassielli. A proposal of a drift chamber for the IDEA experiment for a future e+e- collider , 2021 .
[8] F. Bedeschi. A detector concept proposal for a circular e+e- collider , 2021 .
[9] N. Bohr,et al. The τ challenges at FCC-ee , 2021 .
[10] G. Varner,et al. Measurement results for the ASoC V3: A High Performance Waveform Digitizer System-on-Chip , 2020, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).
[11] I. Gnesi. Micromegas chambers for the ATLAS New Small Wheel upgrade , 2020, Journal of Instrumentation.
[12] S. Eno,et al. New perspectives on segmented crystal calorimeters for future colliders , 2020, Journal of Instrumentation.
[13] Jennifer Hasler,et al. Large-Scale Field-Programmable Analog Arrays , 2020, Proceedings of the IEEE.
[14] A. Ribon,et al. Status of Geant4 simulations of calorimeters , 2020, Journal of Instrumentation.
[15] F. Bedeschi,et al. First test-beam results obtained with IDEA, a detector concept designed for future lepton colliders , 2020 .
[16] R. Poschl. Recent results of the technological prototypes of the CALICE highly granular calorimeters , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
[17] The Ild Collaboration,et al. The ILD detector at the ILC , 2019, 1912.04601.
[18] R. Aleksan,et al. Precision measurement of the Z boson to electron neutrino coupling at the future circular colliders , 2019, Physics Letters B.
[19] N. Demaria,et al. A 110 nm CMOS process for fully-depleted pixel sensors , 2019, Journal of Instrumentation.
[20] Zhipei Sun,et al. Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals , 2019, Nanomaterials.
[21] M. Ruan,et al. Performance study of the full hadronic WW and ZZ events’ separation at the CEPC , 2019, The European Physical Journal C.
[22] M. Korjik,et al. Performance of DSB – a new glass and glass ceramic as scintillation material for future calorimetry , 2019, Journal of Physics: Conference Series.
[23] M. Dam. Tau-lepton Physics at the FCC-ee circular e$^+$e$^-$ Collider , 2018, SciPost Physics Proceedings.
[24] S. Hsu,et al. Precision Higgs physics at the CEPC , 2018, Chinese Physics C.
[25] R. Wigmans,et al. On the limits of the hadronic energy resolution of calorimeters , 2017, 1710.10535.
[26] The Cepc Study Group. CEPC Conceptual Design Report: Volume 2 - Physics&Detector , 2018, 1811.10545.
[27] S. Lee,et al. Tests of a dual-readout fiber calorimeter with SiPM light sensors , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.
[28] Wei Ding,et al. Hollow-core negative-curvature fiber for UV guidance. , 2018, Optics letters.
[29] F. Bedeschi,et al. Dual-readout Calorimetry , 2013, 1307.5538.
[30] Valentino,et al. Advances on micro-RWELL gaseous detector , 2017 .
[31] M. Korjik,et al. Study of the New Glass and Glass Ceramic Stoichiometric and Gd3+ -loaded BaO*2SiO2 (DSB:Ce) Scintillation Material for Future Calorimetry , 2017 .
[32] A. Ochi,et al. The μ-RWELL detector , 2017 .
[33] C. Collaboration,et al. Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.
[34] F. Pang,et al. PbS Quantum Dots Filled Photonic Crystal Fiber for All-fiber Amplifier , 2017 .
[35] V. Cindro,et al. The edge transient-current technique (E-TCT) with high energy hadron beam , 2016 .
[36] A. Benaglia,et al. Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques , 2016, IEEE Transactions on Nuclear Science.
[37] Kiyotomo Kawagoe,et al. Experimental tests of particle flow calorimetry , 2015, 1507.05893.
[38] Qi Guo,et al. Single photon detector with high polarization sensitivity , 2015, Scientific Reports.
[39] F. Pang,et al. Formation and photoluminescence property of PbS quantum dots in silica optical fiber based on atomic layer deposition , 2015 .
[40] G. Dong,et al. Quantum Dot-Doped Glasses and Fibers: Fabrication and Optical Properties , 2015, Front. Mater..
[41] N. Akchurin. Combined Forward Calorimetry Option for Phase II CMS Endcap Upgrade , 2015 .
[42] Peter Skands,et al. An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..
[43] F. Bedeschi,et al. The electromagnetic performance of the RD52 fiber calorimeter , 2014 .
[44] S. Weiss,et al. Optical properties of quantum-dot-doped liquid scintillators. , 2013, Journal of instrumentation : an IOP and SISSA journal.
[45] L. Winslow. Applications of Nanoparticles for Particle Physics: A Whitepaper for Snowmass 2013 , 2013, 1309.1388.
[46] N. Akchurin. Polarization as a Tool in Calorimetry , 2012 .
[47] M. Cacciari,et al. FastJet user manual , 2011, 1111.6097.
[48] R. Zhu,et al. Crystals for the HHCAL Detector Concept , 2011, IEEE Transactions on Nuclear Science.
[49] F. Bedeschi,et al. Polarization as a tool for dual-readout calorimetry , 2011 .
[50] P. Roberts,et al. Linear and nonlinear optical properties of hollow core photonic crystal fiber , 2011 .
[51] M. Thomson. Particle flow calorimetry and the PandoraPFA algorithm , 2009, 0907.3577.
[52] P. D. Luckey,et al. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c , 2009 .
[53] D. Groom. Energy flow in a hadronic cascade: Application to hadron calorimetry , 2006, physics/0605164.
[54] L. Videau,et al. Signal Propagation Over Polarization-Maintaining Fibers: Problem and Solutions , 2006, Journal of Lightwave Technology.
[55] A. Penzo,et al. Hadron and jet detection with a dual-readout calorimeter , 2005 .
[56] Jonathan C. Knight,et al. Photonic crystal fibres , 2003, Nature.
[57] A. Dell'Acqua,et al. Geant4 - A simulation toolkit , 2003 .
[58] A. Sill,et al. Beam tests of a thin dual-readout calorimeter for detecting cosmic rays outside the Earth's atmosphere , 2001 .
[59] B.J. Eggleton,et al. Cladding-mode-resonances in air-silica microstructure optical fibers , 2000, Journal of Lightwave Technology.
[60] Jürgen Schmidhuber,et al. Long Short-Term Memory , 1997, Neural Computation.
[61] M. Livan,et al. Scintillating-fibre calorimetry , 1995 .
[62] R. J. Black,et al. Loss calculations for antiresonant waveguides , 1993 .
[63] K. Okamoto,et al. Polarization-maintaining fibers and their applications , 1986 .