Dual-Readout Calorimetry for Future Experiments Probing Fundamental Physics

In this White Paper for the 2021 Snowmass process, we detail the status and prospects for dual-readout calorimetry. While all calorimeters allow estimation of energy depositions in their active material, dual-readout calorimeters aim to provide additional information on the light produced in the sensitive media via, for example, wavelength and polarization, and/or a precision timing measurements, allowing an estimation of the shower-by-shower particle content. Utilizing this knowledge of the shower particle content may allow unprecedented energy resolution for hadronic particles and jets, and new types of particle flow algorithms. We also discuss the impact continued development of this kind of calorimetry could have on precision on Higgs boson property measurements at future colliders.

[1]  A. Andreazza,et al.  Characterisation of HV-MAPS ATLASPix3 and its applications for future lepton colliders , 2022, Journal of Instrumentation.

[2]  M. Lucchini Combining Dual-Readout Crystals and Fibers in a Hybrid Calorimeter for the IDEA Experiment , 2022, Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021).

[3]  G. Polesello,et al.  Particle flow with a hybrid segmented crystal and fiber dual-readout calorimeter , 2022, Journal of Instrumentation.

[4]  F. Bedeschi,et al.  Calorimetry at FCC-ee , 2021, The European Physical Journal Plus.

[5]  C. Cowden,et al.  On the use of neural networks for energy reconstruction in high-granularity calorimeters , 2021, Journal of Instrumentation.

[6]  P. Azzi,et al.  Exploring requirements and detector solutions for FCC-ee , 2021, The European Physical Journal Plus.

[7]  G. Tassielli A proposal of a drift chamber for the IDEA experiment for a future e+e- collider , 2021 .

[8]  F. Bedeschi A detector concept proposal for a circular e+e- collider , 2021 .

[9]  N. Bohr,et al.  The τ challenges at FCC-ee , 2021 .

[10]  G. Varner,et al.  Measurement results for the ASoC V3: A High Performance Waveform Digitizer System-on-Chip , 2020, 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[11]  I. Gnesi Micromegas chambers for the ATLAS New Small Wheel upgrade , 2020, Journal of Instrumentation.

[12]  S. Eno,et al.  New perspectives on segmented crystal calorimeters for future colliders , 2020, Journal of Instrumentation.

[13]  Jennifer Hasler,et al.  Large-Scale Field-Programmable Analog Arrays , 2020, Proceedings of the IEEE.

[14]  A. Ribon,et al.  Status of Geant4 simulations of calorimeters , 2020, Journal of Instrumentation.

[15]  F. Bedeschi,et al.  First test-beam results obtained with IDEA, a detector concept designed for future lepton colliders , 2020 .

[16]  R. Poschl Recent results of the technological prototypes of the CALICE highly granular calorimeters , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[17]  The Ild Collaboration,et al.  The ILD detector at the ILC , 2019, 1912.04601.

[18]  R. Aleksan,et al.  Precision measurement of the Z boson to electron neutrino coupling at the future circular colliders , 2019, Physics Letters B.

[19]  N. Demaria,et al.  A 110 nm CMOS process for fully-depleted pixel sensors , 2019, Journal of Instrumentation.

[20]  Zhipei Sun,et al.  Optical Amplification in Hollow-Core Negative-Curvature Fibers Doped with Perovskite CsPbBr3 Nanocrystals , 2019, Nanomaterials.

[21]  M. Ruan,et al.  Performance study of the full hadronic WW and ZZ events’ separation at the CEPC , 2019, The European Physical Journal C.

[22]  M. Korjik,et al.  Performance of DSB – a new glass and glass ceramic as scintillation material for future calorimetry , 2019, Journal of Physics: Conference Series.

[23]  M. Dam Tau-lepton Physics at the FCC-ee circular e$^+$e$^-$ Collider , 2018, SciPost Physics Proceedings.

[24]  S. Hsu,et al.  Precision Higgs physics at the CEPC , 2018, Chinese Physics C.

[25]  R. Wigmans,et al.  On the limits of the hadronic energy resolution of calorimeters , 2017, 1710.10535.

[26]  The Cepc Study Group CEPC Conceptual Design Report: Volume 2 - Physics&Detector , 2018, 1811.10545.

[27]  S. Lee,et al.  Tests of a dual-readout fiber calorimeter with SiPM light sensors , 2018, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[28]  Wei Ding,et al.  Hollow-core negative-curvature fiber for UV guidance. , 2018, Optics letters.

[29]  F. Bedeschi,et al.  Dual-readout Calorimetry , 2013, 1307.5538.

[30]  Valentino,et al.  Advances on micro-RWELL gaseous detector , 2017 .

[31]  M. Korjik,et al.  Study of the New Glass and Glass Ceramic Stoichiometric and Gd3+ -loaded BaO*2SiO2 (DSB:Ce) Scintillation Material for Future Calorimetry , 2017 .

[32]  A. Ochi,et al.  The μ-RWELL detector , 2017 .

[33]  C. Collaboration,et al.  Particle-flow reconstruction and global event description with the CMS detector , 2017, 1706.04965.

[34]  F. Pang,et al.  PbS Quantum Dots Filled Photonic Crystal Fiber for All-fiber Amplifier , 2017 .

[35]  V. Cindro,et al.  The edge transient-current technique (E-TCT) with high energy hadron beam , 2016 .

[36]  A. Benaglia,et al.  Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques , 2016, IEEE Transactions on Nuclear Science.

[37]  Kiyotomo Kawagoe,et al.  Experimental tests of particle flow calorimetry , 2015, 1507.05893.

[38]  Qi Guo,et al.  Single photon detector with high polarization sensitivity , 2015, Scientific Reports.

[39]  F. Pang,et al.  Formation and photoluminescence property of PbS quantum dots in silica optical fiber based on atomic layer deposition , 2015 .

[40]  G. Dong,et al.  Quantum Dot-Doped Glasses and Fibers: Fabrication and Optical Properties , 2015, Front. Mater..

[41]  N. Akchurin Combined Forward Calorimetry Option for Phase II CMS Endcap Upgrade , 2015 .

[42]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[43]  F. Bedeschi,et al.  The electromagnetic performance of the RD52 fiber calorimeter , 2014 .

[44]  S. Weiss,et al.  Optical properties of quantum-dot-doped liquid scintillators. , 2013, Journal of instrumentation : an IOP and SISSA journal.

[45]  L. Winslow Applications of Nanoparticles for Particle Physics: A Whitepaper for Snowmass 2013 , 2013, 1309.1388.

[46]  N. Akchurin Polarization as a Tool in Calorimetry , 2012 .

[47]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[48]  R. Zhu,et al.  Crystals for the HHCAL Detector Concept , 2011, IEEE Transactions on Nuclear Science.

[49]  F. Bedeschi,et al.  Polarization as a tool for dual-readout calorimetry , 2011 .

[50]  P. Roberts,et al.  Linear and nonlinear optical properties of hollow core photonic crystal fiber , 2011 .

[51]  M. Thomson Particle flow calorimetry and the PandoraPFA algorithm , 2009, 0907.3577.

[52]  P. D. Luckey,et al.  The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/c , 2009 .

[53]  D. Groom Energy flow in a hadronic cascade: Application to hadron calorimetry , 2006, physics/0605164.

[54]  L. Videau,et al.  Signal Propagation Over Polarization-Maintaining Fibers: Problem and Solutions , 2006, Journal of Lightwave Technology.

[55]  A. Penzo,et al.  Hadron and jet detection with a dual-readout calorimeter , 2005 .

[56]  Jonathan C. Knight,et al.  Photonic crystal fibres , 2003, Nature.

[57]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[58]  A. Sill,et al.  Beam tests of a thin dual-readout calorimeter for detecting cosmic rays outside the Earth's atmosphere , 2001 .

[59]  B.J. Eggleton,et al.  Cladding-mode-resonances in air-silica microstructure optical fibers , 2000, Journal of Lightwave Technology.

[60]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[61]  M. Livan,et al.  Scintillating-fibre calorimetry , 1995 .

[62]  R. J. Black,et al.  Loss calculations for antiresonant waveguides , 1993 .

[63]  K. Okamoto,et al.  Polarization-maintaining fibers and their applications , 1986 .