Corrigendum: High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

[1]  Jian Zhang,et al.  Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution , 2015, Nature Communications.

[2]  Viet-Duc Le,et al.  Borane-modified graphene-based materials as CO2 adsorbents , 2014 .

[3]  Wenchuan Wang,et al.  A hybrid absorption–adsorption method to efficiently capture carbon , 2014, Nature Communications.

[4]  A. Du,et al.  Carbon dioxide capture and gas separation on B80 fullerene , 2014 .

[5]  Robert Surber,et al.  Closing the knowing-doing gap. , 2013, Psychiatric services.

[6]  T. Aida,et al.  Toward ultralow-bandgap liquid crystalline semiconductors: use of triply fused metalloporphyrin trimer-pentamer as extra-large π-extended mesogenic motifs. , 2012, Chemistry.

[7]  Abhoyjit S Bhown,et al.  In silico screening of carbon-capture materials. , 2012, Nature materials.

[8]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[9]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[10]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[11]  Byung Sun Lee,et al.  Synthesis and properties of hybrid porphyrin tapes. , 2011, Chemistry.

[12]  S. Kim,et al.  Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. , 2011, Physical review letters.

[13]  Yong-Hyun Kim,et al.  Ambient carbon dioxide capture by boron-rich boron nitride nanotube. , 2011, Journal of the American Chemical Society.

[14]  D. Azevedo,et al.  Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X , 2011 .

[15]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[16]  Chun Xing Li,et al.  Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. , 2010, Chemical communications.

[17]  R. Stuart Haszeldine,et al.  Carbon Capture and Storage: How Green Can Black Be? , 2009, Science.

[18]  Sang Ouk Kim,et al.  Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays. , 2009, Nano letters.

[19]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[20]  Jong Min Lim,et al.  Various strategies for highly-efficient two-photon absorption in porphyrin arrays , 2008 .

[21]  A. Doukelis,et al.  Oxyfuel boiler design in a lignite-fired power plant , 2007 .

[22]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[23]  H. Noguchi,et al.  Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO(2) molecules. , 2006, Nano letters.

[24]  R. Steeneveldt,et al.  CO2 Capture and Storage: Closing the Knowing–Doing Gap , 2006 .

[25]  Dongho Kim,et al.  A directly fused tetrameric porphyrin sheet and its anomalous electronic properties that arise from the planar cyclooctatetraene core. , 2006, Journal of the American Chemical Society.

[26]  M. Meyyappan,et al.  CO2 adsorption in single-walled carbon nanotubes , 2003 .

[27]  Dongho Kim,et al.  Photochemistry of covalently-linked multi-porphyrinic systems , 2002, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[28]  D. Michael P. Mingos,et al.  A historical perspective on Dewar's landmark contribution to organometallic chemistry , 2001 .

[29]  A. Osuka,et al.  Syntheses, structural characterizations, and optical and electrochemical properties of directly fused diporphyrins. , 2001, Journal of the American Chemical Society.

[30]  A. Osuka,et al.  Completely Fused Diporphyrins and Triporphyrin , 2000 .

[31]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  K. Pandey Reactivities of Carbonyl Sulfide (COS), Carbon Disulfide (CS2) and Carbon Dioxide (CO2) with Transition-Metal Complexes , 1995 .

[34]  J. Calabrese,et al.  Carbon dioxide coordination chemistry. 5. The preparation and structure of the rhodium complex Rh(.eta.1-CO2)(Cl)(diars)2 , 1983 .

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[37]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[38]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[39]  L. Beda Thermal physics , 1994 .

[40]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[41]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.