Advances in the understanding of microscopic switching mechanisms in ReRAM devices (Invited paper)

In this paper we present the recent advances in the understanding of microscopic mechanisms driving the resistive switching in ReRAM devices using ab initio theoretical methods. We highlight the complex interplay between interface reactions and charge injection in the generation of oxygen Frenkel pairs during the forming step. Energy barrier calculations suggest that the formation/destruction of the conductive filament can be due to movements of oxygen vacancies composing the filament or interaction with oxygen atoms released from the metal electrode.

[1]  L. Larcher,et al.  Charge Transport and Degradation in HfO2 and HfOx Dielectrics , 2013, IEEE Electron Device Letters.

[2]  Jang‐Sik Lee,et al.  Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices , 2008 .

[3]  W. B. Knowlton,et al.  A Physical Model of the Temperature Dependence of the Current Through $\hbox{SiO}_{2}\hbox{/}\hbox{HfO}_{2}$ Stacks , 2011, IEEE Transactions on Electron Devices.

[4]  Serge Blonkowski,et al.  Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales , 2007 .

[5]  P. Blaise,et al.  Reduction of Monoclinic HfO2: A Cascading Migration of Oxygen and Its Interplay with a High Electric Field , 2016 .

[6]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[7]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[8]  A. Gloskovskii,et al.  Engineering of the chemical reactivity of the Ti/HfO₂ interface for RRAM: experiment and theory. , 2014, ACS applied materials & interfaces.

[9]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[10]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[13]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[14]  J. Rumble CRC Handbook of Chemistry and Physics , 2019 .

[15]  R. Waser,et al.  Mechanism for bipolar switching in a Pt / TiO 2 / Pt resistive switching cell , 2009 .

[16]  Journal of Chemical Physics , 1932, Nature.

[17]  K. Lehovec Lattice structure of β-Ta2O5 , 1964 .

[18]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[19]  Frederick T. Chen,et al.  Low-Power and Nanosecond Switching in Robust Hafnium Oxide Resistive Memory With a Thin Ti Cap , 2010, IEEE Electron Device Letters.

[20]  E. Vianello,et al.  HfO2-Based RRAM: Electrode Effects, Ti/HfO2 Interface, Charge Injection, and Oxygen (O) Defects Diffusion Through Experiment and Ab Initio Calculations , 2016, IEEE Transactions on Electron Devices.

[21]  J. Autran,et al.  Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications , 1998 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  R. Bartynski,et al.  BAND ALIGNMENT ISSUES RELATED TO HFO2 /SIO2 /P-SI GATE STACKS , 2004 .

[24]  Sung-Hoon Lee,et al.  Hidden structural order in orthorhombic Ta2O5. , 2013, Physical review letters.

[25]  Hao Jiang,et al.  Enhanced oxygen vacancy diffusion in Ta2O5 resistive memory devices due to infinitely adaptive crystal structure , 2016 .

[26]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[27]  G. Bersuker,et al.  Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory , 2007 .

[28]  G. Bersuker,et al.  Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. , 2007, Physical review letters.

[29]  Andrew G. Glen,et al.  APPL , 2001 .

[30]  Z. Hou,et al.  Al-induced reduction of the oxygen diffusion in HfO2: an ab initio study , 2008 .

[31]  J. McPherson,et al.  Thermochemical description of dielectric breakdown in high dielectric constant materials , 2003 .

[32]  Alfredo Pasquarello,et al.  Oxygen vacancy in monoclinic HfO2: A consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments , 2006 .

[33]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.