Reversible intercalation of hexagonal boron nitride with Brønsted acids.

Hexagonal boron nitride (h-BN) is an insulating compound that is structurally similar to graphite. Like graphene, single sheets of BN are atomically flat, and they are of current interest in few-layer hybrid devices, such as transistors and capacitors, that contain insulating components. While graphite and other layered compounds can be intercalated by redox reactions and then converted chemically to suspensions of single sheets, insulating BN is not susceptible to oxidative intercalation except by extremely strong oxidizing agents. We report that stage-1 intercalation compounds can be formed by simple thermal drying of h-BN in Brønsted acids H2SO4, H3PO4, and HClO4. X-ray photoelectron and vibrational spectra, as well as electronic structure and molecular dynamics calculations, demonstrate that noncovalent interactions of these oxyacids with the basic N atoms of the sheets drive the intercalation process.

[1]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[2]  F. Cotton,et al.  442. The effect of complex-formation by phosphine oxides on their P–O stretching frequencies , 1960 .

[3]  K. R. Seddon Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1987 .

[4]  W. Müller-Warmuth,et al.  Progress in Intercalation Research , 1994 .

[5]  P. Giguère,et al.  INFRARED SPECTRUM OF THE H 3 O + ION IN AQUEOUS SOLUTIONS , 1957 .

[6]  A. Chapman,et al.  Spectra of phosphorus compounds—I the infra-red spectra of orthophosphates , 1964 .

[7]  M. Dresselhaus,et al.  Intercalation of hexagonal boron nitride with potassium , 1989 .

[8]  S. Y. Tyree,et al.  Addition Compounds of Metal Halides with POX3 Compounds , 1958 .

[9]  V. Volkov,et al.  X-ray photoelectron spectroscopy of boron compounds , 2005 .

[10]  L. J. Bellamy The infra-red spectra of complex molecules , 1962 .

[11]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[12]  M. Ishigami,et al.  Intercalation of Hexagonal Boron Nitride by Strong Oxidizers and Evidence for the Metallic Nature of the Products , 1999 .

[13]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[14]  A. V. Duin,et al.  Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations , 2008 .

[15]  R. Janoschek,et al.  Extremely high polarizability of hydrogen bonds , 1972 .

[16]  D. Briggs,et al.  High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database , 1992 .

[17]  F. Cotton,et al.  445. Phosphine oxide complexes. Part IV. Tetrahedral, planar, and binuclear complexes of copper(II) with phosphine oxides, and some arsine oxide analogues , 1961 .

[18]  M. Dresselhaus,et al.  Cesium and bromine doping into hexagonal boron nitride , 1986 .

[19]  P. A. Giguère,et al.  LES SPECTRES INFRAROUGES DE L'ACIDE SULFURIQUE ET DES OLÉUMS , 1960 .

[20]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[21]  B. K. Gupta,et al.  Artificially stacked atomic layers: toward new van der Waals solids. , 2012, Nano letters.

[22]  Mustafa Lotya,et al.  Large‐Scale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions , 2011, Advanced materials.

[23]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[24]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[25]  R. G. Albridge,et al.  Measured binding energy shifts of "3p" and "3d" electrons in arsenic compounds , 1972 .

[26]  H. Hyodo,et al.  Li-intercalation into hexagonal boron nitride , 2010 .

[27]  W. L. Jolly,et al.  Thermodynamic interpretation of chemical shifts in core-electron binding energies , 1970 .

[28]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  John R. Van Wazer,et al.  Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates , 1973 .

[31]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[32]  Takashi Taniguchi,et al.  Doping of hexagonal boron nitride via intercalation: A theoretical prediction , 2010 .

[33]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[34]  Alessandro Siria,et al.  Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube , 2013, Nature.

[35]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[36]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  J. Hooley Isotherms of metal chloride vapors on graphite , 1973 .

[39]  Jiayan Luo,et al.  Graphene oxide nanocolloids. , 2010, Journal of the American Chemical Society.

[40]  W. Rudolph,et al.  Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. , 2010, Dalton transactions.

[41]  M. Mckelvy,et al.  Molecular Intercalation Reactions in Lamellar Compounds , 1990 .

[42]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[43]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[44]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[45]  R. Yetter,et al.  Using molecular dynamics simulations with a ReaxFF reactive force field to develop a kinetic mechanism for ammonia borane oxidation , 2013 .

[46]  Bryce Crawford,et al.  The Infra-red Spectra of Complex Molecules. , 1955 .

[47]  Pinshane Y. Huang,et al.  Graphene and boron nitride lateral heterostructures for atomically thin circuitry , 2012, Nature.

[48]  Olivier Roubeau,et al.  Solutions of negatively charged graphene sheets and ribbons. , 2008, Journal of the American Chemical Society.

[49]  D.D.L. Chung,et al.  Exfoliation of graphite , 1987 .

[50]  W. Glaunsinger,et al.  Early Events in Intercalation Reactions: The Preintercalation State , 1996 .

[51]  E. E. Muryumin,et al.  Optical conductivity of atomic hexagonal boron nitride layers , 2012 .

[52]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[53]  Wanlin Guo,et al.  Controlling the Functionalizations of Hexagonal Boron Nitride Structures by Carrier Doping , 2011 .

[54]  D. Corbridge Phosphorus : an outline of its chemistry, biochemistry, and uses , 1995 .

[55]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[56]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[57]  G. Zundel,et al.  Polarizable acid–acid and acid–water hydrogen bonds with H3PO2, H3PO3, H3PO4, and H3AsO4 , 1979 .

[58]  D. Young,et al.  1083. Electrochemical preparation of salts from well-oriented graphite , 1963 .

[59]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[60]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[61]  William A Goddard,et al.  Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. , 2011, The journal of physical chemistry. B.

[62]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[63]  F. Lévy Intercalated Layered Materials , 1979 .

[64]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[65]  A. V. van Duin,et al.  Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. , 2011, The journal of physical chemistry. A.

[66]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[67]  P. Eklund,et al.  Optical properties of pyrolytic boron nitride in the energy range 0.05-10 eV , 1984 .

[68]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[69]  A. V. van Duin,et al.  ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. , 2010, The journal of physical chemistry. A.

[70]  T. Sasaki,et al.  Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate , 1998 .

[71]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[72]  Ian T. Sines,et al.  Chemical Synthesis of Two-Dimensional Iron Chalcogenide Nanosheets: FeSe, FeTe, Fe(Se,Te), and FeTe2 , 2009 .

[73]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[74]  P. Swift Adventitious carbon—the panacea for energy referencing? , 1982 .

[75]  K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds , 1978 .

[76]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.