Effect of carburization on electrochemical corrosion behaviours of TiAl alloy

[1]  William E Lee,et al.  TEM study of the early stages of Ti2AlC oxidation at 900 °C , 2012 .

[2]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[3]  Yanchun Zhou,et al.  Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review , 2010 .

[4]  Y. Koizumi,et al.  Selective dissolution of nanolamellar Ti–41 at.% Al alloy single crystals , 2010 .

[5]  M. Pereira-da-Silva,et al.  In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti―6Al―4V in simulated body fluid at 25 °C and 37 °C , 2009 .

[6]  Yanchun Zhou,et al.  A first-principles investigation of the phase stability of Ti(2)AlC with Al vacancies , 2008 .

[7]  P. Sundaram,et al.  A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt% NaCl solution and seawater , 2007 .

[8]  M. Barsoum,et al.  Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4 , 2006 .

[9]  P. Sundaram,et al.  Corrosion evaluation of Ti-48Al-2Cr-2Nb (at.%) in Ringer's solution. , 2006, Acta biomaterialia.

[10]  M. Kissi,et al.  Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution , 2006 .

[11]  Isolda Costa,et al.  Corrosion characterization of titanium alloys by electrochemical techniques , 2006 .

[12]  Karren L. More,et al.  Coating and near‐surface modification design strategies for protective and functional surfaces , 2005 .

[13]  M. Brady,et al.  Alloy Design of Intermetallics for Protective Scale Formation and for Use as Precursors for Complex Ceramic Phase Surfaces , 2004 .

[14]  P. Gouma,et al.  In situ observation of carbide and silicide precipitation in C+Si alloyed γ-TiAl , 2003 .

[15]  M. Inoue,et al.  NOVEL REACTIVE PLASMA PROCESSING FOR TRANSFORMING SURFACES OF METALS AND INTERMETALLICS TO CERAMICS , 2002 .

[16]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[17]  J. González,et al.  Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications , 1999 .

[18]  B. S. Covino,et al.  Investigation of Passive Films on α2 and γ Titanium Aluminides by X-Ray Photoelectron Spectroscopy , 1999 .

[19]  G. Weatherly,et al.  The nitriding behavior of Ti-Al alloys at 1000 °C , 1999 .

[20]  A. Menand,et al.  Atom-probe investigations of TiAl alloys , 1998 .

[21]  B. Yilbas,et al.  Hydrogen embrittlement of Ti-6Al-4V alloy with surface modification by TiN coating , 1998 .

[22]  A. Menand,et al.  Interstitial solubility in γ and α2 phases of TiAl-based alloys , 1996 .

[23]  H. Saffarian,et al.  Corrosion behavior of binary titanium aluminide intermetallics , 1996 .

[24]  Shyi-Kaan Wu,et al.  Ion nitriding of titanium aluminides with 25–53 at.% Al II: Corrosion properties , 1996 .

[25]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[26]  J. Schuster,et al.  Summary of constitutional data on the Aluminum-Carbon-Titanium system , 1994 .

[27]  J. Wit,et al.  Corrosion of aluminium in acidic and neutral solutions , 1993 .

[28]  C. Liu,et al.  Ordered intermetallic alloys, part II: Silicides, trialuminides, and others , 1993 .

[29]  Yy Kim Intermetallic alloys based on gamma titanium aluminide , 1989 .

[30]  B. Boukamp A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems , 1986 .