Microbial subversion of heparan sulfate proteoglycans.

The interactions between the host and microbial pathogen largely dictate the onset, progression, and outcome of infectious diseases. Pathogens subvert host components to promote their pathogenesis and, among these, cell surface heparan sulfate proteoglycans are exploited by many pathogens for their initial attachment and subsequent cellular entry. The ability to interact with heparan sulfate proteoglycans is widespread among viruses, bacteria, and parasites. Certain pathogens also use heparan sulfate proteoglycans to evade host defense mechanisms. These findings suggest that heparan sulfate proteoglycans are critical in microbial pathogenesis, and that heparan sulfate proteoglycan-pathogen interactions are potential targets for novel prophylactic and therapeutic approaches.

[1]  M. Ammendolia,et al.  Glycosaminoglycans are not indispensable for the anti-herpes simplex virus type 2 activity of lactoferrin. , 2009, Biochimie.

[2]  T. Foster,et al.  Alpha-toxin facilitates the generation of CXC chemokine gradients and stimulates neutrophil homing in Staphylococcus aureus pneumonia. , 2008, The Journal of infectious diseases.

[3]  Zhenqing Zhang,et al.  Human Follicular Fluid Heparan Sulfate Contains Abundant 3-O-Sulfated Chains with Anticoagulant Activity* , 2008, Journal of Biological Chemistry.

[4]  V. O'Donnell,et al.  Heparan Sulfate-Binding Foot-and-Mouth Disease Virus Enters Cells via Caveola-Mediated Endocytosis , 2008, Journal of Virology.

[5]  J. Watanabe,et al.  Programmed Cell Death 5 from Toxoplasma gondii: a secreted molecule that exerts a pro-apoptotic effect on host cells. , 2008, Molecular and biochemical parasitology.

[6]  H. Lortat-Jacob,et al.  The HIV-1 Envelope Glycoprotein gp120 Features Four Heparan Sulfate Binding Domains, Including the Co-receptor Binding Site* , 2008, Journal of Biological Chemistry.

[7]  R. Linhardt,et al.  Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. , 2008, Biochemistry.

[8]  H. Vennema,et al.  Cleavage of Group 1 Coronavirus Spike Proteins: How Furin Cleavage Is Traded Off against Heparan Sulfate Binding upon Cell Culture Adaptation , 2008, Journal of Virology.

[9]  F. Ruscetti,et al.  Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4+ T cells , 2008, Nature Medicine.

[10]  K. Hybiske,et al.  Exit strategies of intracellular pathogens , 2008, Nature Reviews Microbiology.

[11]  John D. Lambris,et al.  Complement evasion by human pathogens , 2008, Nature Reviews Microbiology.

[12]  J. Hegemann,et al.  The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding , 2007, Molecular microbiology.

[13]  D. Glebe,et al.  Role of glycosaminoglycans for binding and infection of hepatitis B virus , 2007, Cellular microbiology.

[14]  T. Geijtenbeek,et al.  Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1 , 2007, Proceedings of the National Academy of Sciences.

[15]  Michael Elkin,et al.  Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis , 2007, Development.

[16]  Oliver Billker,et al.  Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. , 2007, Cell host & microbe.

[17]  M. Diamond,et al.  Secreted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sulfate E , 2007, PLoS pathogens.

[18]  Olga Kalinina,et al.  Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection , 2007, Cellular microbiology.

[19]  H. Selinka,et al.  Surface-exposed Amino Acid Residues of HPV16 L1 Protein Mediating Interaction with Cell Surface Heparan Sulfate* , 2007, Journal of Biological Chemistry.

[20]  H. Selinka,et al.  Inhibition of Transfer to Secondary Receptors by Heparan Sulfate-Binding Drug or Antibody Induces Noninfectious Uptake of Human Papillomavirus , 2007, Journal of Virology.

[21]  N. Cheshenko,et al.  Multiple receptor interactions trigger release of membrane and intracellular calcium stores critical for herpes simplex virus entry. , 2007, Molecular biology of the cell.

[22]  C. Jolly,et al.  EnP1, a Microsporidian Spore Wall Protein That Enables Spores To Adhere to and Infect Host Cells In Vitro , 2007, Eukaryotic Cell.

[23]  V. Veresov,et al.  Structural Analysis of the HIV-1 gp120 V3 Loop: Application to the HIV-Haiti Isolates , 2007, Journal of biomolecular structure & dynamics.

[24]  Joseph M Thompson,et al.  Heparan Sulfate Binding Can Contribute to the Neurovirulence of Neuroadapted and Nonneuroadapted Sindbis Viruses , 2007, Journal of Virology.

[25]  A. Bennett,et al.  Streptococcus pneumoniae Sheds Syndecan-1 Ectodomains through ZmpC, a Metalloproteinase Virulence Factor* , 2007, Journal of Biological Chemistry.

[26]  S. Urban,et al.  Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. , 2007, Hepatology.

[27]  F. Ruscetti,et al.  GLUT 1 Is Not the Primary Binding Receptor but Is Associated with Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 , 2007 .

[28]  S. Selleck,et al.  The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. , 2006, Developmental biology.

[29]  F. Ruscetti,et al.  GLUT1 Is Not the Primary Binding Receptor but Is Associated with Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 , 2006, Journal of Virology.

[30]  Bryan A. Millis,et al.  Secreted Neutral Metalloproteases of Bacillus anthracis as Candidate Pathogenic Factors* , 2006, Journal of Biological Chemistry.

[31]  P. Gallay,et al.  Cell-Free Human Immunodeficiency Virus Type 1 Transcytosis through Primary Genital Epithelial Cells , 2006, Journal of Virology.

[32]  S. Feldman,et al.  Identification of Linear Heparin-Binding Peptides Derived from Human Respiratory Syncytial Virus Fusion Glycoprotein That Inhibit Infectivity , 2006, Journal of Virology.

[33]  B. Chandran,et al.  RhoA-GTPase Facilitates Entry of Kaposi's Sarcoma-Associated Herpesvirus into Adherent Target Cells in a Src-Dependent Manner , 2006, Journal of Virology.

[34]  Ding Xu,et al.  Role for 3-O-Sulfated Heparan Sulfate as the Receptor for Herpes Simplex Virus Type 1 Entry into Primary Human Corneal Fibroblasts , 2006, Journal of Virology.

[35]  R. Samulski,et al.  Adeno-Associated Virus Type 2 Contains an Integrin α5β1 Binding Domain Essential for Viral Cell Entry , 2006, Journal of Virology.

[36]  F. Ruscetti,et al.  Human T-Cell Leukemia Virus Type 1 (HTLV-1) and HTLV-2 Use Different Receptor Complexes To Enter T Cells , 2006, Journal of Virology.

[37]  M. Wahlgren,et al.  Release of Sequestered Malaria Parasites upon Injection of a Glycosaminoglycan , 2006, PLoS pathogens.

[38]  R. Orlando,et al.  Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway , 2006, Lipids in Health and Disease.

[39]  Robert J. Linhardt,et al.  Viral and Cellular Determinants of the Hepatitis C Virus Envelope-Heparan SulfateInteraction , 2006, Journal of Virology.

[40]  M. Schmidtke,et al.  N- and 6-O-Sulfated Heparan Sulfates Mediate Internalization of Coxsackievirus B3 Variant PD into CHO-K1 Cells , 2006, Journal of Virology.

[41]  D. Shukla,et al.  A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. , 2006, Virology.

[42]  M. Leinonen,et al.  Inhibitory effect of heparan sulfate-like glycosaminoglycans on the infectivity of Chlamydia pneumoniae in HL cells varies between strains. , 2006, Microbes and infection.

[43]  C. Locht,et al.  Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. , 2006, Microbes and infection.

[44]  R. Samulski,et al.  Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. , 2006, Journal of virology.

[45]  Bryan A. Millis,et al.  Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors , 2006, BMC Microbiology.

[46]  D. Hess,et al.  ABILITY OF THE HEPARAN SULFATE PROTEOGLYCAN SYNDECAN-1 TO PARTICIPATE IN BACTERIAL TRANSLOCATION ACROSS THE INTESTINAL EPITHELIAL BARRIER , 2005, Shock.

[47]  B. Bosch,et al.  Murine Coronavirus with an Extended Host Range Uses Heparan Sulfate as an Entry Receptor , 2005, Journal of Virology.

[48]  F. Ruscetti,et al.  Heparan Sulfate Proteoglycans Mediate Attachment and Entry of Human T-Cell Leukemia Virus Type 1 Virions into CD4+ T Cells , 2005, Journal of Virology.

[49]  P. Green,et al.  Comparative biology of human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 , 2005, Oncogene.

[50]  M. Bomsel,et al.  HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer. , 2005, Molecular biology of the cell.

[51]  J. Esko,et al.  Cell Surface Heparan Sulfate Promotes Replication of Toxoplasma gondii , 2005, Infection and Immunity.

[52]  R. Iozzo Basement membrane proteoglycans: from cellar to ceiling , 2005, Nature Reviews Molecular Cell Biology.

[53]  M. Rouabhia,et al.  Porphyromonas gingivalis lipopolysaccharide induces shedding of syndecan‐1 expressed by gingival epithelial cells , 2005, Journal of cellular physiology.

[54]  Min-Hsiang Yang,et al.  The oligomeric structure of vaccinia viral envelope protein A27L is essential for binding to heparin and heparan sulfates on cell surfaces: a structural and functional approach using site-specific mutagenesis. , 2005, Journal of molecular biology.

[55]  M. Ozbun,et al.  Human Papillomavirus Type 31b Infection of Human Keratinocytes Does Not Require Heparan Sulfate , 2005, Journal of Virology.

[56]  D. Blaas,et al.  Human Rhinovirus Type 89 Variants Use Heparan Sulfate Proteoglycan for Cell Attachment , 2005, Journal of Virology.

[57]  Ding Xu,et al.  Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. , 2005, The Biochemical journal.

[58]  M. Flugelman,et al.  Heparanase Uptake Is Mediated by Cell Membrane Heparan Sulfate Proteoglycans* , 2004, Journal of Biological Chemistry.

[59]  L. Madoff,et al.  Alpha C Protein of Group B Streptococcus Binds Host Cell Surface Glycosaminoglycan and Enters Cells by an Actin-dependent Mechanism* , 2004, Journal of Biological Chemistry.

[60]  P. Spear,et al.  Herpes simplex virus: receptors and ligands for cell entry , 2004, Cellular microbiology.

[61]  Ik-sang Kim,et al.  Role of Syndecan-4 in the cellular invasion of Orientia tsutsugamushi. , 2004, Microbial pathogenesis.

[62]  M. Klagsbrun,et al.  Activation of Syndecan-1 Ectodomain Shedding by Staphylococcus aureus α-Toxin and β-Toxin* , 2004, Journal of Biological Chemistry.

[63]  R. Rappuoli,et al.  Effect of heparin binding on Helicobacter pylori resistance to serum. , 2004, Journal of medical microbiology.

[64]  E. Kriehuber,et al.  Different Heparan Sulfate Proteoglycans Serve asCellular Receptors for HumanPapillomaviruses , 2003, Journal of Virology.

[65]  E. Argyris,et al.  Human Immunodeficiency Virus Type 1 Enters Primary Human Brain Microvascular Endothelial Cells by a Mechanism Involving Cell Surface Proteoglycans Independent of Lipid Rafts , 2003, Journal of Virology.

[66]  T. McCutchan,et al.  Molecular Mechanism of Host Specificity in Plasmodium falciparum Infection , 2003, Journal of Biological Chemistry.

[67]  W. Griffiths,et al.  Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity. , 2003, International journal for parasitology.

[68]  Q. Sattentau,et al.  Human T-Cell Leukemia Virus Type 1 Envelope Glycoprotein gp46 Interacts with Cell Surface Heparan Sulfate Proteoglycans , 2003, Journal of Virology.

[69]  C. Badorff,et al.  Heparan Sulfates and Coxsackievirus-Adenovirus Receptor: Each One Mediates Coxsackievirus B3 PD Infection , 2003, Journal of Virology.

[70]  G. Nemerow,et al.  Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. , 2003, Human Gene Therapy.

[71]  D. Hess,et al.  Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes , 2003, Medical Microbiology and Immunology.

[72]  M. Götte Syndecans in inflammation , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[73]  P. Gallay,et al.  Syndecan captures, protects, and transmits HIV to T lymphocytes. , 2003, Immunity.

[74]  A. Malmström,et al.  Heparan Sulfate 3-O-Sulfotransferase Isoform 5 Generates Both an Antithrombin-binding Site and an Entry Receptor for Herpes Simplex Virus, Type 1* , 2002, The Journal of Biological Chemistry.

[75]  P. Bhanot,et al.  Plasmodium yoelii sporozoites infect Syndecan-1 deficient mice. , 2002, Molecular and biochemical parasitology.

[76]  C. Locht,et al.  Eighty-Kilodalton N-Terminal Moiety of Bordetella pertussis Filamentous Hemagglutinin: Adherence, Immunogenicity, and Protective Role , 2002, Infection and Immunity.

[77]  J. Esko,et al.  Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture. , 2002, Glycobiology.

[78]  A. Schmaier,et al.  Heparan Sulfate Modulates Kinin Release by Trypanosoma cruzi through the Activity of Cruzipain* , 2002, The Journal of Biological Chemistry.

[79]  S. Selleck,et al.  Order out of chaos: assembly of ligand binding sites in heparan sulfate. , 2002, Annual review of biochemistry.

[80]  P. Gallay,et al.  Syndecans Serve as Attachment Receptors for Human Immunodeficiency Virus Type 1 on Macrophages , 2001, Journal of Virology.

[81]  P. Spear,et al.  Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. , 2001, The Journal of clinical investigation.

[82]  D. Spillmann Heparan sulfate: anchor for viral intruders? , 2001, Biochimie.

[83]  A. Bollen,et al.  The surface antigen SAG3 mediates the attachment of Toxoplasma gondii to cell-surface proteoglycans. , 2001, Molecular and biochemical parasitology.

[84]  J. Gallagher Heparan sulfate: growth control with a restricted sequence menu. , 2001, The Journal of clinical investigation.

[85]  C. Locht,et al.  The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination , 2001, Nature.

[86]  G. Pier,et al.  Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence , 2001, Nature.

[87]  A. Woods Syndecans: transmembrane modulators of adhesion and matrix assembly. , 2001, The Journal of clinical investigation.

[88]  M. Giacca,et al.  Internalization of HIV-1 Tat Requires Cell Surface Heparan Sulfate Proteoglycans* , 2001, The Journal of Biological Chemistry.

[89]  A. Eley,et al.  Infectivity of Chlamydia trachomatisSerovar LGV but Not E Is Dependent on Host Cell Heparan Sulfate , 2001, Infection and Immunity.

[90]  J. Scharfstein,et al.  Host Cell Invasion by TRYPANOSOMA cRUZI Is Potentiated by Activation of Bradykinin B2 Receptors , 2000, The Journal of experimental medicine.

[91]  T. Renné,et al.  High Molecular Weight Kininogen Utilizes Heparan Sulfate Proteoglycans for Accumulation on Endothelial Cells* , 2000, The Journal of Biological Chemistry.

[92]  O. Reizes,et al.  Cell Surface Heparan Sulfate Proteoglycans: Selective Regulators of Ligand-Receptor Encounters* , 2000, The Journal of Biological Chemistry.

[93]  T. McCutchan,et al.  Role of cysteines in Plasmodium falciparum circumsporozoite protein: interactions with heparin can rejuvenate inactive protein mutants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[94]  L. Sibley,et al.  Toxoplasma gondii Uses Sulfated Proteoglycans for Substrate and Host Cell Attachment , 2000, Infection and Immunity.

[95]  R. Stephens,et al.  Chlamydia‐dependent biosynthesis of a heparan sulphate‐like compound in eukaryotic cells , 2000, Cellular microbiology.

[96]  C. Dehio,et al.  Syndecan‐1 and syndecan‐4 can mediate the invasion of OpaHSPG‐expressing Neisseria gonorrhoeae into epithelial cells , 2000, Cellular microbiology.

[97]  R. Eisenberg,et al.  A Novel Role for 3-O-Sulfated Heparan Sulfate in Herpes Simplex Virus 1 Entry , 1999, Cell.

[98]  J. V. van Putten,et al.  Sulfated Polysaccharide-Directed Recruitment of Mammalian Host Proteins: a Novel Strategy in Microbial Pathogenesis , 1999, Infection and Immunity.

[99]  D. Stuart,et al.  The structure and function of a foot‐and‐mouth disease virus–oligosaccharide receptor complex , 1999, The EMBO journal.

[100]  M. Götte,et al.  Functions of cell surface heparan sulfate proteoglycans. , 1999, Annual review of biochemistry.

[101]  R. Johnston,et al.  Adaptation of Sindbis Virus to BHK Cells Selects for Use of Heparan Sulfate as an Attachment Receptor , 1998, Journal of Virology.

[102]  J. V. van Putten,et al.  Entry of OpaA+ gonococci into HEp‐2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors , 1998, Molecular microbiology.

[103]  R. Manservigi,et al.  Heparan Sulfate Proteoglycan Binding by Herpes Simplex Virus Type 1 Glycoproteins B and C, Which Differ in Their Contributions to Virus Attachment, Penetration, and Cell-to-Cell Spread , 1998, Journal of Virology.

[104]  R. Eisenberg,et al.  Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. , 1998, Science.

[105]  Kathleen A. Boyle,et al.  Receptor-Binding Properties of a Soluble Form of Human Cytomegalovirus Glycoprotein B , 1998, Journal of Virology.

[106]  S. J. Flynn,et al.  Interaction between Pseudorabies Virus and Heparin/Heparan Sulfate , 1998, The Journal of Biological Chemistry.

[107]  G. Cornelis,et al.  Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus , 1998, Molecular microbiology.

[108]  T. Meyer,et al.  Acidic Sphingomyelinase Mediates Entry of N. gonorrhoeae into Nonphagocytic Cells , 1997, Cell.

[109]  D. Spillmann,et al.  Structural Requirement of Heparan Sulfate for Interaction with Herpes Simplex Virus Type 1 Virions and Isolated Glycoprotein C* , 1997, The Journal of Biological Chemistry.

[110]  J. Esko,et al.  Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate , 1997, Nature Medicine.

[111]  J. Esko,et al.  Microbial adherence to and invasion through proteoglycans , 1997, Infection and immunity.

[112]  J. Vázquez-Boland,et al.  Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition , 1997, Infection and immunity.

[113]  U. Lindahl,et al.  Domain Structure of Heparan Sulfates from Bovine Organs* , 1996, The Journal of Biological Chemistry.

[114]  J. Putten,et al.  Binding of syndecan‐like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. , 1995, The EMBO journal.

[115]  Choll W. Kim,et al.  Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns. , 1994, Molecular biology of the cell.

[116]  M. Lyon,et al.  Liver heparan sulfate structure. A novel molecular design. , 1994, The Journal of biological chemistry.

[117]  R. D. Isaacs Borrelia burgdorferi bind to epithelial cell proteoglycans. , 1994, The Journal of clinical investigation.

[118]  J. Esko,et al.  A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans , 1993, The Journal of cell biology.

[119]  S. Hoffman,et al.  Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates , 1992, The Journal of cell biology.

[120]  J. Spring,et al.  Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. , 1992, Annual review of cell biology.

[121]  B. Herold,et al.  Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. , 1992, Advances in experimental medicine and biology.

[122]  E. Ortega-Barria,et al.  A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells , 1991, Cell.