A Robust Geometric Model for Argument Classification

Argument classification is the task of assigning semantic roles to syntactic structures in natural language sentences. Supervised learning techniques for frame semantics have been recently shown to benefit from rich sets of syntactic features. However argument classification is also highly dependent on the semantics of the involved lexicals. Empirical studies have shown that domain dependence of lexical information causes large performance drops in outside domain tests. In this paper a distributional approach is proposed to improve the robustness of the learning model against out-of-domain lexical phenomena.

[1]  J. Katz,et al.  The philosophy of linguistics , 1989 .

[2]  Richard Johansson,et al.  The Effect of Syntactic Representation on Semantic Role Labeling , 2008, COLING.

[3]  Laurie J. Heyer,et al.  Exploring expression data: identification and analysis of coexpressed genes. , 1999, Genome research.

[4]  Daniel Jurafsky,et al.  Automatic Labeling of Semantic Roles , 2002, CL.

[5]  Roberto Basili,et al.  Automatic induction of FrameNet lexical units , 2008, EMNLP.

[6]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[7]  Richard Johansson,et al.  LTH: Semantic Structure Extraction using Nonprojective Dependency Trees , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[8]  Hinrich Schütze,et al.  Automatic Word Sense Discrimination , 1998, Comput. Linguistics.

[9]  Charles J. Fillmore,et al.  Frames and the semantics of understanding , 1985 .

[10]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[11]  Christopher D. Manning,et al.  Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.

[12]  David R. Dowty Thematic proto-roles and argument selection , 1991 .

[13]  Katrin Erk,et al.  SemEval-2007 Task 19: Frame Semantic Structure Extraction , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[14]  Mirella Lapata,et al.  Dependency-Based Construction of Semantic Space Models , 2007, CL.

[15]  Dan Roth,et al.  The Necessity of Syntactic Parsing for Semantic Role Labeling , 2005, IJCAI.

[16]  Mirella Lapata,et al.  Semi-Supervised Semantic Role Labeling , 2009, EACL.

[17]  Katrin Erk,et al.  A Simple, Similarity-based Model for Selectional Preferences , 2007, ACL.

[18]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[19]  Roberto Basili,et al.  Tree Kernels for Semantic Role Labeling , 2008, CL.

[20]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[21]  Wayne H. Ward,et al.  Towards Robust Semantic Role Labeling , 2007, CL.