Assessing the accuracy of new geminal-based approaches.

We present a systematic theoretical study on the dissociation of diatomic molecules and their spectroscopic constants using our recently presented geminal-based wave function ansätze. Specifically, the performance of the antisymmetric product of rank two geminals (APr2G), the antisymmetric product of 1-reference-orbital geminals (AP1roG) and its orbital-optimized variant (OO-AP1roG) are assessed against standard quantum chemistry methods. Our study indicates that these new geminal-based approaches provide a cheap, robust, and accurate alternative for the description of bond-breaking processes in closed-shell systems requiring only mean-field-like computational cost. In particular, the spectroscopic constants obtained from OO-AP1roG are in very good agreement with reference theoretical and experimental data.

[1]  J. A. Coxon The radial Hamiltonian operator for LiH X1Σ , 1992 .

[2]  H. Bethe,et al.  Zur Theorie der Metalle , 1931 .

[3]  D. Silver Natural Orbital Expansion of Interacting Geminals , 1969 .

[4]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[5]  P. Hiberty,et al.  Quadruple bonding in C2 and analogous eight-valence electron species. , 2012, Nature chemistry.

[6]  A. Fioretti,et al.  Formation of cold Cs2 molecules through photoassociation , 2000 .

[7]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[8]  Péter R. Surján,et al.  The interaction of chemical bonds. IV. Interbond charge transfer by a coupled‐cluster‐type formalism , 1995 .

[9]  R. Urdahl,et al.  An experimental determination of the heat of formation of C2 and the CH bond dissociation energy in C2H , 1991 .

[10]  D. L. Cooper,et al.  Correlation and Localization , 1999 .

[11]  F. Weinhold,et al.  Reduced Density Matrices of Atoms and Molecules. II. On the N‐Representability Problem , 1967 .

[12]  Rick A. Kendall,et al.  Benchmark calculations with correlated molecular wave functions. II. Configuration interaction calculations on first row diatomic hydrides , 1993 .

[13]  J. Schrieffer Theory of superconductivity , 1958 .

[14]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[15]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[16]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions XII. Core correlation effects on the homonuclear diatomic molecules B2-F2 , 1997 .

[17]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[18]  Robert J. Buenker,et al.  Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wavefunctions and comparison with related techniques , 1978 .

[19]  Josef Paldus,et al.  An accurate determination of rovibrational spectra using the externally corrected coupled-cluster approaches: LiH ground state , 2003 .

[20]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[21]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[22]  P. Durand,et al.  Transposition of the Theories Describing Superconducting Systems to Molecular Systems. Method of Biorbitals , 1965 .

[23]  K. Ruedenberg,et al.  Electron Correlation and Augmented Separated‐Pair Expansion , 1968 .

[24]  Patrick Bultinck,et al.  Projected seniority-two orbital optimization of the antisymmetric product of one-reference orbital geminal. , 2014, The Journal of chemical physics.

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  Micah L. Abrams,et al.  Full configuration interaction potential energy curves for the X (1)Sigma(g) (+), B (1)Delta(g), and B(') (1)Sigma(g) (+) states of C(2): a challenge for approximate methods. , 2004, The Journal of chemical physics.

[27]  T. Yanai,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[28]  G. Scuseria,et al.  An assessment for the full coupled cluster method including all single, double, and triple excitations: The diatomic molecules LiH, Li2, BH, LiF, C2, BeO, CN+, BF, NO+, and F2 , 1990 .

[29]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[30]  Dmitry I. Lyakh,et al.  Multireference nature of chemistry: the coupled-cluster view. , 2012, Chemical reviews.

[31]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[32]  J. Cullen,et al.  Generalized valence bond solutions from a constrained coupled cluster method , 1996 .

[33]  P. Surján,et al.  Interaction of chemical bonds. V. Perturbative corrections to geminal‐type wave functions , 2000 .

[34]  N. Edelstein,et al.  Comprar The Chemistry of the Actinide and Transactinide Elements · Volume 6 | Edelstein, Norman M. | 9789048131464 | Springer , 2010 .

[35]  Paul W. Ayers,et al.  Efficient description of strongly correlated electrons with mean-field cost , 2014, 1401.8019.

[36]  X. López,et al.  Communication: chemical bonding in carbon dimer isovalent series from the natural orbital functional theory perspective. , 2013, The Journal of chemical physics.

[37]  H.J.J. van Dam,et al.  NWChem: scalable parallel computational chemistry , 2011 .

[38]  Marcel Nooijen,et al.  The density matrix renormalization group self-consistent field method: orbital optimization with the density matrix renormalization group method in the active space. , 2008, The Journal of chemical physics.

[39]  J. Dukelsky,et al.  Solving the Richardson equations close to the critical points , 2006, math-ph/0609022.

[40]  W. T. Zemke,et al.  Improved potential energy curves and dissociation energies for HF, DF and TF , 1991 .

[41]  M. Dolg,et al.  Relativistic Pseudopotentials: Their Development and Scope of Applications , 2012 .

[42]  Markus Reiher,et al.  Communication: four-component density matrix renormalization group. , 2013, The Journal of chemical physics.

[43]  G. Náray‐Szabó All‐pair wave function and reduced variational equation for electronic systems , 1975 .

[44]  Takeshi Yanai,et al.  Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer. , 2011, The Journal of chemical physics.

[45]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. III. Effect of Correlation on Orbitals , 1963 .

[46]  R. Velasco ULTRAVIOLET SPECTRA OF LiH AND LiD , 1957 .

[47]  A. Fioretti,et al.  Formation of Cold Cs 2 Molecules through Photoassociation , 1998 .

[48]  S. Semken,et al.  Quantum chemical calculations show that the uranium molecule U 2 has a quintuple bond , 2022 .

[49]  Sebastian Wouters,et al.  Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations. , 2012, The Journal of chemical physics.

[50]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[51]  K. Pierloot Transition metals compounds: Outstanding challenges for multiconfigurational methods , 2011 .

[52]  Rick A. Kendall,et al.  BENCHMARK CALCULATIONS WITH CORRELATED MOLECULAR WAVE FUNCTIONS. III: CONFIGURATION INTERACTION CALCULATIONS ON FIRST ROW HOMONUCLEAR DIATOMICS , 1993 .

[53]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[54]  John F. Stanton,et al.  Applications of Post‐Hartree—Fock Methods: A Tutorial , 2007 .

[55]  G. Scuseria,et al.  Excited electronic states from a variational approach based on symmetry-projected Hartree-Fock configurations. , 2013, The Journal of chemical physics.

[56]  Francesco A Evangelista,et al.  Alternative single-reference coupled cluster approaches for multireference problems: the simpler, the better. , 2011, The Journal of chemical physics.

[57]  N. Sherman,et al.  Exact eigenstates of the pairing-force Hamiltonian , 1964 .

[58]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[59]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[60]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[61]  H. Bethe On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain , 1931 .

[62]  Markus Reiher,et al.  Construction of CASCI-type wave functions for very large active spaces. , 2011, The Journal of chemical physics.

[63]  P. Limacher,et al.  Simple and inexpensive perturbative correction schemes for antisymmetric products of nonorthogonal geminals. , 2014, Physical chemistry chemical physics : PCCP.

[64]  Markus Reiher,et al.  New electron correlation theories for transition metal chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[65]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[66]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[67]  Péter R. Surján,et al.  THE INTERACTION OF CHEMICAL BONDS. III: PERTURBED STRICTLY LOCALIZED GEMINALS IN LMO BASIS , 1994 .

[68]  Laura Gagliardi,et al.  The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. , 2008, The Journal of chemical physics.

[69]  Giovanni Li Manni,et al.  The generalized active space concept in multiconfigurational self-consistent field methods. , 2011, The Journal of chemical physics.

[70]  Markus Reiher,et al.  Local spin analysis and chemical bonding. , 2013, Chemistry.

[71]  P. Jasik,et al.  Calculation of adiabatic potentials of Li2+ , 2007 .

[72]  Francesco Aquilante,et al.  SplitGAS Method for Strong Correlation and the Challenging Case of Cr2. , 2013, Journal of chemical theory and computation.

[73]  M. Reiher,et al.  Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO. , 2013, Physical chemistry chemical physics : PCCP.

[74]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[75]  Jerzy Leszczynski,et al.  Radiation Induced Molecular Phenomena in Nucleic Acids , 2008 .

[76]  Vitaly A. Rassolov,et al.  A geminal model chemistry , 2002 .

[77]  M. Reiher,et al.  Accurate ab Initio Spin Densities , 2012, Journal of chemical theory and computation.

[78]  C. E. Dykstra,et al.  AB INITIO CALCULATIONS OF LITHIUM HYDRIDE , 1997 .

[79]  G. Scuseria,et al.  The optimization of molecular orbitals for coupled cluster wavefunctions , 1987 .

[80]  Frank Weinhold,et al.  Reduced Density Matrices of Atoms and Molecules. I. The 2 Matrix of Double‐Occupancy, Configuration‐Interaction Wavefunctions for Singlet States , 1967 .

[81]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[82]  Paul W. Ayers,et al.  The influence of orbital rotation on the energy of closed-shell wavefunctions , 2014 .

[83]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[84]  G. Scuseria,et al.  Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model , 2012, 1204.2006.

[85]  Peter Pulay,et al.  A perspective on the CASPT2 method , 2011 .

[86]  A. J. Coleman THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .

[87]  G. Náray‐Szabó All-pair wavefunction for many-electron states with the highest multiplicity , 1973 .

[88]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[89]  D. Silver Bilinear Orbital Expansion of Geminal‐Product Correlated Wavefunctions , 1970 .

[90]  Laura Gagliardi,et al.  Multiconfigurational quantum chemical methods for molecular systems containing actinides. , 2007, Chemical Society reviews.

[91]  Juergen Hinze,et al.  LiH Potential Curves and Wavefunctions for X 1Σ+, A 1Σ+, B 1Π, 3Σ+, and 3Π , 1972 .

[92]  O. Sǐnanoğlu,et al.  MANY-ELECTRON THEORY OF ATOMS AND MOLECULES. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[93]  R. Richardson A restricted class of exact eigenstates of the pairing-force Hamiltonian , 1963 .

[94]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[95]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[96]  M. Reiher A Theoretical Challenge : Transition-Metal Compounds , 2009 .

[97]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[98]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[99]  Patrick Bultinck,et al.  A New Mean-Field Method Suitable for Strongly Correlated Electrons: Computationally Facile Antisymmetric Products of Nonorthogonal Geminals. , 2013, Journal of chemical theory and computation.

[100]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[101]  A. J. Coleman THE AGP MODEL FOR FERMION SYSTEMS , 1997 .

[102]  Takashi Tsuchimochi,et al.  Projected Hartree-Fock theory. , 2012, The Journal of chemical physics.

[103]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[104]  Sanghamitra Das,et al.  Full implementation and benchmark studies of Mukherjee's state-specific multireference coupled-cluster ansatz. , 2010, The Journal of chemical physics.

[105]  G. Scuseria,et al.  Multireference symmetry-projected variational approaches for ground and excited states of the one-dimensional Hubbard model , 2013, 1304.4192.

[106]  E. Rothstein Molecular Constants of Lithium Hydrides by the Molecular‐Beam Electric Resonance Method , 1969 .

[107]  W. Kutzelnigg On the validity of the electron pair approximation for the Beryllium ground state , 1965 .

[108]  M. Reiher,et al.  Quantum entanglement in carbon-carbon, carbon-phosphorus and silicon-silicon bonds. , 2014, Physical chemistry chemical physics : PCCP.

[109]  Garnet Kin-Lic Chan,et al.  Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory. , 2010, The Journal of chemical physics.

[110]  F. Gadéa,et al.  Accurate Ab Initio Calculations for LiH and its Ions, LiH+ and LiH− , 2006 .

[111]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[112]  S. Baerdemacker Richardson-Gaudin integrability in the contraction limit of the quasispin , 2012, 1207.3417.

[113]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[114]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[115]  Paul W. Ayers,et al.  A size-consistent approach to strongly correlated systems using a generalized antisymmetrized product of nonorthogonal geminals , 2013 .

[116]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[117]  K. Peterson Accurate multireference configuration interaction calculations on the lowest 1Σ+ and 3Π electronic states of C2, CN+, BN, and BO+ , 1995 .

[118]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[119]  P. Surján,et al.  Strongly orthogonal geminals: size-extensive and variational reference states , 2012, Journal of Mathematical Chemistry.

[120]  Uğur Bozkaya,et al.  Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory. , 2011, The Journal of chemical physics.

[121]  Lu T Xu,et al.  Insights into the Perplexing Nature of the Bonding in C2 from Generalized Valence Bond Calculations. , 2014, Journal of chemical theory and computation.

[122]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[123]  V. Gritsev,et al.  Bethe ansatz and ordinary differential equation correspondence for degenerate Gaudin models , 2012, 1201.5542.

[124]  P. Löwdin Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects , 1955 .

[125]  M. Reiher,et al.  Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. , 2008, The Journal of chemical physics.

[126]  Josef Paldus,et al.  The general-model-space state-universal coupled-cluster method exemplified by the LiH molecule , 2003 .

[127]  R. Parr,et al.  Generalized Antisymmetrized Product Wave Functions for Atoms and Molecules , 1956 .

[128]  Edina Rosta,et al.  Two-body zeroth order hamiltonians in multireference perturbation theory: The APSG reference state , 2002 .