Max-value Entropy Search for Efficient Bayesian Optimization

Entropy Search (ES) and Predictive Entropy Search (PES) are popular and empirically successful Bayesian Optimization techniques. Both rely on a compelling information-theoretic motivation, and maximize the information gained about the $\arg\max$ of the unknown function; yet, both are plagued by the expensive computation for estimating entropies. We propose a new criterion, Max-value Entropy Search (MES), that instead uses the information about the maximum function value. We show relations of MES to other Bayesian optimization methods, and establish a regret bound. We observe that MES maintains or improves the good empirical performance of ES/PES, while tremendously lightening the computational burden. In particular, MES is much more robust to the number of samples used for computing the entropy, and hence more efficient for higher dimensional problems.

[1]  D. Slepian The one-sided barrier problem for Gaussian noise , 1962 .

[2]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[3]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[4]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[5]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[6]  L. Cook The Genetical Theory of Natural Selection — A Complete Variorum Edition , 2000, Heredity.

[7]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[8]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[9]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[10]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[11]  Tao Wang,et al.  Automatic Gait Optimization with Gaussian Process Regression , 2007, IJCAI.

[12]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[13]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[14]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[15]  Carl E. Rasmussen,et al.  Additive Gaussian Processes , 2011, NIPS.

[16]  Andreas Krause,et al.  Contextual Gaussian Process Bandit Optimization , 2011, NIPS.

[17]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[18]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[19]  Nando de Freitas,et al.  Bayesian Optimization in High Dimensions via Random Embeddings , 2013, IJCAI.

[20]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[21]  Aki Vehtari,et al.  GPstuff: Bayesian modeling with Gaussian processes , 2013, J. Mach. Learn. Res..

[22]  Andreas Krause,et al.  High-Dimensional Gaussian Process Bandits , 2013, NIPS.

[23]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[24]  Jan Peters,et al.  An experimental comparison of Bayesian optimization for bipedal locomotion , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Kirthevasan Kandasamy,et al.  High Dimensional Bayesian Optimisation and Bandits via Additive Models , 2015, ICML.

[26]  Leslie Pack Kaelbling,et al.  Bayesian Optimization with Exponential Convergence , 2015, NIPS.

[27]  Chun-Liang Li,et al.  High Dimensional Bayesian Optimization via Restricted Projection Pursuit Models , 2016, AISTATS.

[28]  Yu Maruyama,et al.  Global Continuous Optimization with Error Bound and Fast Convergence , 2016, J. Artif. Intell. Res..

[29]  Bolei Zhou,et al.  Optimization as Estimation with Gaussian Processes in Bandit Settings , 2015, AISTATS.

[30]  Matthew W. Hoffman,et al.  Output-Space Predictive Entropy Search for Flexible Global Optimization , 2016 .

[31]  Leslie Pack Kaelbling,et al.  Focused model-learning and planning for non-Gaussian continuous state-action systems , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).