A parameter-free barebones particle swarm algorithm for unsupervised pattern classification

This paper introduces an efficient algorithm for unsupervised clustering that is based on barebones Particle Swarm BB. The proposed algorithm introduces significant enhancement to the Particle Swarm Optimization PSO by eliminating the parameters tuning. The Algorithm aims at finding the centroids of predefined number of clusters where each centroid attracts similar patterns. This research tests and investigates the application of the proposed algorithm to the problem of unsupervised pattern classification by applying the algorithm to segmentations of different images. Experimental results show that the the proposed BB-based algorithm outperforms other state-of-the-art clustering algorithms on all the different levels of comparison. The impact of eliminating the parameters tuning is evident on the performance of the algorithm. In addition, the influence of different values for the swarm size of BB on performance is also illustrated.

[1]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[2]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[3]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[4]  Emad Fatemizadeh,et al.  Clustering method for fMRI activation detection using optimal number of clusters , 2009, 2009 4th International IEEE/EMBS Conference on Neural Engineering.

[5]  Andries Petrus Engelbrecht,et al.  Differential evolution methods for unsupervised image classification , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization method for image clustering , 2005, Int. J. Pattern Recognit. Artif. Intell..

[8]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[9]  Basilis Boutsinas,et al.  On clustering tree structured data with categorical nature , 2008, Pattern Recognit..

[10]  Greg Hamerly,et al.  Alternatives to the k-means algorithm that find better clusterings , 2002, CIKM '02.

[11]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  Baldo Faieta,et al.  Diversity and adaptation in populations of clustering ants , 1994 .

[14]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[15]  Zhili Zhao Image Clustering Based on Extreme K-means Algorithm , 2012 .

[16]  Nicolas Monmarché,et al.  A new clustering algorithm based on the chemical recognition system of ants , 2002 .

[17]  James Kennedy,et al.  Bare bones particle swarms , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[18]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[19]  Xiaojun Wu,et al.  Convergence analysis and improvements of quantum-behaved particle swarm optimization , 2012, Inf. Sci..

[20]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[21]  Andries P. Engelbrecht,et al.  Image Classification using Particle Swarm Optimization , 2002, SEAL.

[22]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[24]  Tian-Shyug Lee,et al.  A Modified Algorithm of Bare Bones Particle Swarm Optimization , 2010 .

[25]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[26]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Shi Zhongzhi,et al.  A clustering algorithm based on swarm intelligence , 2001, 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479).

[28]  Xiaojun Wu,et al.  Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection , 2012, Evolutionary Computation.

[29]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[30]  Joachim M. Buhmann,et al.  Histogram clustering for unsupervised image segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[31]  Russell C. Eberhart,et al.  Gene clustering using self-organizing maps and particle swarm optimization , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[32]  Chen-Chia Chuang,et al.  Fuzzy c-means clustering algorithm with unknown number of clusters for symbolic interval data , 2008, 2008 SICE Annual Conference.

[33]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .