Quadrature rules for integrals of fuzzy-number-valued functions
暂无分享,去创建一个
[1] Congxin Wu,et al. On Henstock integral of fuzzy-number-valued functions (I) , 2001, Fuzzy Sets Syst..
[2] G. Anastassiou. Handbook of Analytic Computational Methods in Applied Mathematics , 2000 .
[3] M. Ming. On embedding problems of fuzzy number spaces. Part 4 , 1993 .
[4] Pietro Cerone,et al. Midpoint Type Rules from an Inequalities Point of View , 2000 .
[5] S. Dragomir,et al. Trapezoidal Type Rules from an Inequalities Point of View , 1999 .
[6] D. Dubois,et al. FUZZY NUMBERS: AN OVERVIEW , 1993 .
[7] Sorin G. Gal. Approximation Theory in Fuzzy Setting , 2000 .
[8] W. Congxin,et al. Embedding problem of fuzzy number space: part II , 1992 .
[9] Abraham Kandel,et al. Solutions to fuzzy integral equations with arbitrary kernels , 1999, Int. J. Approx. Reason..
[10] Bobby Schmidt,et al. Fuzzy math , 2001 .
[11] Hsien-Chung Wu,et al. Evaluate Fuzzy Riemann Integrals Using the Monte Carlo Method , 2001 .
[12] Pietro Cerone,et al. Three Point Quadrature Rules Involving, at Most, a First Derivative , 1999 .
[13] Peng-Yee Lee. Lanzhou Lectures on Henstock Integration , 1989 .
[14] R. Goetschel,et al. Elementary fuzzy calculus , 1986 .
[15] Yuhu Feng. Fuzzy-valued mappings with finite variation, fuzzy-valued measures and fuzzy-valued Lebesgue-Stieltjes integrals , 2001, Fuzzy Sets Syst..