Missing consequences in multiattribute utility theory

This paper addresses how to deal with decision alternatives with missing consequences in multicriteria decision-making problems. We propose disregarding the attributes for which a decision alternative provides no consequence by redistributing their respective weights throughout the objective hierarchy in favor of a straightforward idea: the assignation of the respective attribute range as a default value for missing consequences due to possible uncertainty about the decision alternative consequences. In both cases, decision alternatives are evaluated by means of an additive multi-attribute utility model. An illustrative example of the restoration of radionuclide contaminated aquatic ecosystems is shown.

[1]  Risto Lahdelma,et al.  Two ways to handle dependent uncertainties in multi-criteria decision problems , 2009 .

[2]  Roman Słowiński,et al.  Dealing with Missing Data in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 2000 .

[3]  Piet Rietveld,et al.  Multiple objective decision methods and regional planning , 1980 .

[4]  H. Raiffa,et al.  The art and science of negotiation , 1983 .

[5]  T. Saaty Axiomatic foundation of the analytic hierarchy process , 1986 .

[6]  G. Tzeng,et al.  Evaluating sustainable fishing development strategies using fuzzy MCDM approach , 2005 .

[7]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Kaisa Miettinen,et al.  Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA) , 2003, Eur. J. Oper. Res..

[9]  P. Salminen,et al.  Prospect theory and stochastic multicriteria acceptability analysis (SMAA) , 2009 .

[10]  Agis M. Papadopoulos,et al.  Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems , 2008 .

[11]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[12]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[13]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[14]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[15]  Raimo P. Hämäläinen,et al.  Decision support by interval SMART/SWING - methods to incorporate uncertainty into multiattribute analysis , 2001 .

[16]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[17]  Alfonso Mateos,et al.  Dominance, potential optimality and alternative ranking in imprecise multi-attribute decision making , 2007, J. Oper. Res. Soc..

[18]  David L. Olson,et al.  Multi-attribute utility methods in group decision making: Past applications and potential for inclusion in GDSS , 1997 .

[19]  Fred Wenstøp,et al.  On operations research and value conflicts , 2009 .

[20]  Simon French,et al.  A FRAMEWORK FOR SENSITIVITY ANALYSIS IN DISCRETE MULTI OBJECTIVE DECISION MAKING , 1991 .

[21]  Andrzej Skowron,et al.  New Directions in Rough Sets, Data Mining, and Granular-Soft Computing , 1999, Lecture Notes in Computer Science.

[22]  Martin Weber Decision Making with Incomplete Information , 1987 .

[23]  Miroslaw Kwiesielewicz,et al.  Ranking Decision Variants by Subjective Paired Comparisons in Cases with Incomplete Data , 2003, ICCSA.

[24]  Otto Rentz,et al.  Integrated technique assessment with imprecise information as a support for the identification of best available techniques (BAT) , 2001, OR Spectr..

[25]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[26]  Soung Hie Kim,et al.  Dominance, potential optimality, imprecise information, and hierarchical structure in multi-criteria analysis , 2002, Comput. Oper. Res..

[27]  Nitin Garg,et al.  Combining decision tree and MAUT for selecting a country for a global manufacturing facility , 2007 .

[28]  John C. Butler,et al.  Simulation techniques for the sensitivity analysis of multi-criteria decision models , 1997 .

[29]  Soung Hie Kim,et al.  Establishing dominance and potential optimality in multi-criteria analysis with imprecise weight and value , 2001, Comput. Oper. Res..

[30]  Luis G. Vargas,et al.  Uncertainty and rank order in the analytic hierarchy process , 1987 .

[31]  Robert T. Clemen,et al.  Making Hard Decisions: An Introduction to Decision Analysis , 1997 .

[32]  Antonio Jiménez-Martín,et al.  A generic multi-attribute analysis system , 2006, Comput. Oper. Res..

[33]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[34]  T. Stewart A CRITICAL SURVEY ON THE STATUS OF MULTIPLE CRITERIA DECISION MAKING THEORY AND PRACTICE , 1992 .

[35]  Antonio Jiménez-Martín,et al.  A decision support system for multiattribute utility evaluation based on imprecise assignments , 2003, Decis. Support Syst..

[36]  Stephen R. Watson,et al.  Structuring Multi-attribute Value Hierarchies , 1987 .

[37]  Lars Håkanson,et al.  The application of the lake ecosystem index in multi-attribute decision analysis in radioecology , 2000 .

[38]  T. Stewart Robustness of Additive Value Function Methods in MCDM , 1996 .

[39]  Salvatore Greco,et al.  Handling Missing Values in Rough Set Analysis of Multi-Attribute and Multi-Criteria Decision Problems , 1999, RSFDGrC.

[40]  P. Fishburn Analysis of Decisions with Incomplete Knowledge of Probabilities , 1965 .

[41]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[42]  A. Hatami-Marbini,et al.  An Extension of the Electre I Method for Group Decision-Making Under a Fuzzy Environment , 2011 .

[43]  Georgios I. Doukidis,et al.  Decision making : recent developments and worldwide applications , 2000 .

[44]  Craig W. Kirkwood,et al.  Strategic decision making : multiobjective decision analysis with spreadsheets : instructor's manual , 1996 .

[45]  P. Harker Alternative modes of questioning in the analytic hierarchy process , 1987 .