Thermal conductivity of binary ceramic composites made of insulating and conducting materials comprising full composition range – Applied to yttria partially stabilized zirconia and molybdenum disilicide

[1]  P. Bison,et al.  Thirty Years of Thermal Barrier Coatings (TBC), Photothermal and Thermographic Techniques: Best Practices and Lessons Learned , 2022, Journal of Thermal Spray Technology.

[2]  W. Sloof,et al.  Self-healing capacity of Mullite-Yb2SiO5 environmental barrier coating material with embedded Ti2AlC MAX phase particles , 2021 .

[3]  A. Weibel,et al.  Study of the densification and grain growth mechanisms occurring during spark plasma sintering of different submicronic yttria-stabilized zirconia powders , 2021, Journal of the European Ceramic Society.

[4]  T. Abe,et al.  Self-healing by design: universal kinetic model of strength recovery in self-healing ceramics , 2020, Science and technology of advanced materials.

[5]  P. Greil Self‐Healing Engineering Ceramics with Oxidation‐Induced Crack Repair , 2019, Advanced Engineering Materials.

[6]  P. Xiao,et al.  Damage evolution in a self‐healing air plasma sprayed thermal barrier coating containing self‐shielding MoSi 2 particles , 2019, Journal of the American Ceramic Society.

[7]  S. Zwaag,et al.  Self-healing of Al2O3 containing Ti microparticles , 2018, Ceramics International.

[8]  S. Zwaag,et al.  Autonomous high‐temperature healing of surface cracks in Al2O3containing Ti2AlC particles , 2018, Journal of the American Ceramic Society.

[9]  S. Zwaag,et al.  Self-healing thermal barrier coating systems fabricated by spark plasma sintering , 2018 .

[10]  S. van der Zwaag,et al.  The effect of the TiC particle size on the preferred oxidation temperature for self-healing of oxide ceramic matrix materials , 2018, Journal of Materials Science.

[11]  M. Nanko,et al.  Self-Healing of Ni/Mullite Hybrid Materials via High-Temperature Oxidation , 2017 .

[12]  S. Zwaag,et al.  Influence of embedded MoSi2 particles on the high temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings , 2016 .

[13]  S. Zwaag,et al.  On the use of TiC as high-temperature healing particles in alumina based composites , 2016 .

[14]  F. Cernuschi Can TBC porosity be estimated by non-destructive infrared techniques? A theoretical and experimental analysis , 2015 .

[15]  M. Nanko,et al.  Recovery of mechanical strength by surface crack disappearance via thermal oxidation for nano-Ni/Al2O3 hybrid materials , 2013 .

[16]  D. Jeulin,et al.  Influence of the dual-scale random morphology on the heat conduction of plasma-sprayed tungsten via image-based FEM , 2013 .

[17]  K. D. Maglić,et al.  Compendium of Thermophysical Property Measurement Methods , 2012 .

[18]  P. Svoboda,et al.  Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides , 2010 .

[19]  Paolo Bison,et al.  Microstructural characterization of porous thermal barrier coatings by laser flash technique , 2009 .

[20]  S. Marinetti,et al.  Thermophysical, mechanical and microstructural characterization of aged free-standing plasma-sprayed zirconia coatings , 2008 .

[21]  Rolf Landauer,et al.  Electrical conductivity in inhomogeneous media , 2008 .

[22]  W. Tuan,et al.  Mechanical properties of Al2O3-NiAl composites , 2004 .

[23]  W. Tuan Design of Multiphase Materials , 2004 .

[24]  P. Vuoristo,et al.  Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings , 2004 .

[25]  Ermanno G. Grinzato,et al.  Thermal Diffusivity Measurements by Photothermal and Thermographic Techniques , 2004 .

[26]  Z. Wang,et al.  Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings , 2003 .

[27]  P. Scardi,et al.  Microstructure and heat transfer phenomena in ceramic thermal barrier coatings , 2001 .

[28]  H. Yamamura,et al.  Heat capacity and thermodynamic functions of zirconia and yttria-stabilized zirconia , 1999 .

[29]  Y. Chiu,et al.  Toughening Alumina with Metallic and Zirconia Inclusions , 1998 .

[30]  W. Tuan,et al.  Microstructure and its influence on thermal and electrical conductivity of ZrO2–Ag composites , 1997 .

[31]  W. Tuan,et al.  Microstructure and thermal conduction properties of Al2O3Ag composites , 1996 .

[32]  G. Milton The coherent potential approximation is a realizable effective medium scheme , 1985 .

[33]  L. Nielsen The Thermal and Electrical Conductivity of Two-Phase Systems , 1974 .

[34]  Lawrence E. Nielsen,et al.  Thermal conductivity of particulate-filled polymers , 1973 .

[35]  T. Douglas,et al.  Heat content of molybdenum disilicide from 0 degrees to 900 degrees C , 1954 .

[36]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[37]  Salvatore Torquato,et al.  Modeling of physical properties of composite materials , 2000 .

[38]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .