Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential

Abstract In this paper we study a system of Schrodinger–Poisson equations { − Δ u + λ V ( x ) u + K ( x ) ϕ u = | u | p − 2 u , in R 3 , − Δ ϕ = K ( x ) u 2 , in R 3 , where λ > 0 is a parameter, 2 p 6 . Under suitable assumptions on V and K, the existence of nontrivial solution and concentration results are obtained via variational methods. In particular, the potential V is allowed to be sign-changing for the case p ∈ ( 4 , 6 ) .

[1]  D. Ruiz On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases , 2009, 0904.2924.

[2]  Gongbao Li,et al.  Multi-bump solutions for the nonlinear Schrödinger-Poisson system , 2011 .

[3]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[4]  Jiang Yongsheng,et al.  BOUND STATES FOR A STATIONARY NONLINEAR SCHRODINGER-POISSON SYSTEM WITH SIGN-CHANGING POTENTIAL IN R-3 , 2009 .

[5]  Giusi Vaira,et al.  SOLUTIONS OF THE SCHRÖDINGER–POISSON PROBLEM CONCENTRATING ON SPHERES, PART I: NECESSARY CONDITIONS , 2009 .

[6]  Hiroaki Kikuchi On the existence of a solution for elliptic system related to the Maxwell–Schrödinger equations , 2007 .

[7]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .

[8]  Giusi Vaira,et al.  Positive solutions for some non-autonomous Schrödinger–Poisson systems , 2010 .

[9]  Giusi Vaira,et al.  On Concentration of Positive Bound States for the Schrödinger-Poisson Problem with Potentials , 2008 .

[10]  David Ruiz,et al.  Multiple bound states for the Schroedinger-Poisson problem , 2008 .

[11]  Isabella Ianni,et al.  SOLUTIONS OF THE SCHRÖDINGER–POISSON PROBLEM CONCENTRATING ON SPHERES, PART II: EXISTENCE , 2009 .

[12]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[13]  Antonio Ambrosetti,et al.  On Schrödinger-Poisson Systems , 2008 .

[14]  Yanheng Ding,et al.  Existence and Number of Solutions for a Class of Semilinear Schrödinger Equations , 2005 .

[15]  Antonio Azzollini,et al.  A Note on the Ground State Solutions for the Nonlinear Schrödinger-Maxwell Equations , 2007, math/0703677.

[16]  M. Willem Analyse harmonique réelle , 1995 .

[17]  David Ruiz,et al.  The Schrödinger–Poisson equation under the effect of a nonlinear local term , 2006 .

[18]  Thomas Bartsch,et al.  Existence and multiplicity results for some superlinear elliptic problems on RN , 1995 .

[19]  L. Jeanjean,et al.  A positive solution for a nonlinear Schrödinger equation on Rn , 2005 .

[20]  Giusi Vaira,et al.  Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential , 2009, 0904.4105.

[21]  Carlo Mercuri,et al.  Positive solutions of nonlinear Schrödinger–Poisson systems with radial potentials vanishing at infinity , 2008 .

[22]  Yongsheng Jiang,et al.  Schrodinger-Poisson system with steep potential well , 2009, 0910.3436.

[23]  Matthias Kurzke,et al.  SCALING LIMITS OF THE CHERN–SIMONS–HIGGS ENERGY , 2008 .

[24]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Yanheng Ding,et al.  Bound states for semilinear Schrödinger equations with sign-changing potential , 2007 .

[26]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[27]  Fukun Zhao,et al.  On the existence of solutions for the Schrödinger-Poisson equations , 2008 .

[28]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[29]  Multiple semiclassical solutions for the nonlinear Maxwell–Schrödinger system☆ , 2009 .

[30]  Dimitri Mugnai,et al.  Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[31]  Huan-Song Zhou,et al.  Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$ , 2007 .

[32]  W. Zou,et al.  Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth , 2012 .

[33]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[34]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .