Anamorphic zoom system based on liquid crystal displays

In this work we present an anamorphic zoom system, based on liquid crystal displays, which allows changing the magnification and distortion of an image very quickly, without mechanical parts and keeping the output plane stationary. The anamorphic lenses that make up the optical processor are obtained by displaying a combination of convergent-divergent cylindrical lenses, with arbitrary orientations, onto the spatial light modulators. In order to illustrate the capabilities of the system, some experimental results are shown

[1]  C Iemmi,et al.  Digital holography with a point diffraction interferometer. , 2005, Optics express.

[2]  Ichiro Fujieda,et al.  Active optical interconnect based on liquid-crystal grating. , 2003, Applied optics.

[3]  A. Lohmann,et al.  General linear optical coordinate tranformations. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  E. Tam Smart electro-optical zoom lens. , 1992, Optics letters.

[5]  A. Kozma,et al.  Tilted-plane optical processor. , 1972, Applied optics.

[6]  Evaluation and correction of aberrations in an optical correlator by phase-shifting interferometry. , 2003, Optics letters.

[7]  Thu-Lan Kelly,et al.  Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses , 2000 .

[8]  Cecilia La Mela,et al.  Optical encryption using phase-shifting interferometry in a joint transform correlator. , 2006, Optics letters.

[9]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[10]  M. G. Capeluto,et al.  Scanning mechanism based on a programmable liquid crystal display , 2004 .

[11]  Shin-Tson Wu,et al.  Liquid crystal lens with large focal length tunability and low operating voltage. , 2007, Optics express.

[12]  Karlton Crabtree,et al.  Fractional Fourier transform optical system with programmable diffractive lenses. , 2003, Applied optics.

[13]  M. S. Millán,et al.  Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. , 2007, Applied optics.

[14]  Elisabet Pérez-Cabré,et al.  Chromatic compensation of programmable Fresnel lenses. , 2006, Optics express.

[15]  Malgorzata Kujawinska,et al.  Active, LCoS based laser interferometer for microelements studies. , 2006, Optics express.

[16]  M. Yzuel,et al.  Anamorphic and spatial frequency dependent phase modulation on liquid crystal displays. Optimization of the modulation diffraction efficiency. , 2005, Optics express.

[17]  Claudio Iemmi,et al.  Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display. , 2004, Applied optics.

[18]  Claudio Iemmi,et al.  Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model , 2001 .

[19]  Carlos Ferreira,et al.  Ray matrix analysis of anamorphic fractional Fourier systems , 2006 .

[20]  T. Martinez,et al.  Adaptive optical zoom , 2004 .

[21]  A Márquez,et al.  Achromatic diffractive lens written onto a liquid crystal display. , 2006, Optics letters.

[22]  M J Yzuel,et al.  Depth of focus increase by multiplexing programmable diffractive lenses. , 2006, Optics express.

[23]  Jeffrey A. Davis,et al.  Anamorphic optical systems using programmable spatial light modulators. , 1992, Applied optics.