Bayesian Surface and Underwater Navigation

A common framework for maritime surface and underwater (UW) map-aided navigation is proposed as a supplement to satellite navigation based on the global positioning system (GPS). The proposed Bayesian navigation method is based on information from a distance measuring equipment (DME) which is compared with the information obtained from various databases. As a solution to the recursive Bayesian navigation problem, the particle filter is proposed. For the described system, the fundamental navigation performance expressed as the Crameacuter-Rao lower bound (CRLB) is analyzed and an analytic solution as a function of the position is derived. Two detailed examples of different navigation applications are discussed: surface navigation using a radar sensor and a digital sea chart and UW navigation using a sonar sensor and a depth database. In extensive Monte Carlo simulations, the performance is shown to be close to the CRLB. The estimation performance for the surface navigation application is in comparison with usual GPS performance. Experimental data are also successfully applied to the UW application

[1]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[2]  X. Rong Li,et al.  Survey of maneuvering target tracking: dynamic models , 2000, SPIE Defense + Commercial Sensing.

[3]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[4]  Zhe Chen,et al.  BITAN-II: an improved terrain aided navigation algorithm , 1996, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation.

[5]  Jake K. Aggarwal,et al.  Matching Aerial Images to 3-D Terrain Maps , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  R. Deriche,et al.  A terrain referenced underwater positioning using sonar bathymetric profiles and multiscale analysis , 1996, OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century.

[7]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[8]  Rickard Karlsson,et al.  Simulation Based Methods for Target Tracking , 2002 .

[9]  Stefan B. Williams,et al.  Autonomous underwater navigation and control , 2001, Robotica.

[10]  W. K. Stewart,et al.  Terrain-relative navigation for autonomous underwater vehicles , 1997 .

[11]  T. Karlsson Terrain Aided Underwater Navigation using Bayesian Statistics , 2002 .

[12]  Fredrik Gustafsson,et al.  Particle filtering and Cramer-Rao lower bound for underwater navigation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[13]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[14]  J. Aggarwal,et al.  Navigation using image sequence analysis and 3-D terrain matching , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[15]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[16]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[17]  Stefan B. Williams,et al.  Towards terrain-aided navigation for underwater robotics , 2001, Adv. Robotics.

[18]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[19]  Rickard Karlsson,et al.  Particle filtering for positioning and tracking applications , 2005 .

[20]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[21]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[22]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[23]  I. Nygren,et al.  Terrain navigation for underwater vehicles using the correlator method , 2004, IEEE Journal of Oceanic Engineering.

[24]  S.J. Dunham,et al.  Alternatives to GPS , 2001, MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295).

[25]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[26]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[27]  J. C. Hung,et al.  Performance evaluation of six terrain stochastic linearization techniques for TAN , 1991, Proceedings of the IEEE 1991 National Aerospace and Electronics Conference NAECON 1991.

[28]  Fredrik Gustafsson,et al.  Particle filter for underwater terrain navigation , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[29]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[30]  Per K. Enge,et al.  Global positioning system: signals, measurements, and performance [Book Review] , 2002, IEEE Aerospace and Electronic Systems Magazine.

[31]  Yaakov Bar-Shalom,et al.  Design of an interacting multiple model algorithm for air traffic control tracking , 1993, IEEE Trans. Control. Syst. Technol..

[32]  N. Bergman Bayesian Inference in Terrain Navigation , 1997 .

[33]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  D. DiMassa Terrain-Relative Navigation for Autonomous Underwater Vehicles. , 1997 .