Changes in sleep spindle activity of subjects with chronic somatosensitive and sensorial deficits. Preliminary results

We investigated the effects of the somatosensitive and sensory afferent inputs on the thalamic generators of sleep spindles (SS) in adult subjects affected by posterior funiculi lesions (five subjects), deafness (four subjects) or blindness (four subjects). The density, duration and frequency of SS, as well as the index of spindling, were analyzed during stage 2 NREM. The results show that the subjects with somatosensitive and sensorial lesions spent much more time on SS activity than the control group (eight subjects), and had a significantly increased density (<.0001), duration (<.0005) and index of spindling (<.0001). On the other hand, the frequency of spindling was little modified (<.05). Moreover, among the three groups of patients, those with somatosensitive deficits showed the greatest SS activity. In conclusion, our results suggest that the thalamic generators of SS are markedly modulated by peripheral inputs in man.SommarioGli effetti delle afferenze somatosensitive e sensoriali sui generatori talamici dei fusi del sonno sono stati studiati in soggetti adulti con lesioni dei cordoni posteriori (5 soggetti), con cofosi (4 soggetti) e con cecità (4 soggetti). La densità, la durata, la frequenza ed un indice dell'attività fusale sono stati analizzati durante lo stadio 2 NREM. I risultati mostrano che i soggetti con lesioni somatosensitive e sensoriali hanno prodotto un'attività fusale superiore al gruppo di controllo (otto soggetti) con un incremento particolarmente significativo della densità (<.0001) della durata (<.0005) e dell'indice (<.0001) dell'attività fusale. Al contrario la frequenza è stata scarsamente modificata (<.05). Inoltre, fre i tre tipi di pazienti, quelli con deficit somatosensitivi hanno mostrato i valori più elevati di attività fusale. In conclusione i nostri risultati suggeriscono che, nell'uomo, i generatori talamici del sonno sono marcatamente modulati dalle afferenze periferiche.

[1]  D. McCormick,et al.  Mechanisms of oscillatory activity in guinea‐pig nucleus reticularis thalami in vitro: a mammalian pacemaker. , 1993, The Journal of physiology.

[2]  S. Andersson,et al.  CORTICAL SYNCHRONIZATION AND DESYNCHRONIZATION VIA SPINAL PATHWAYS. , 1964, Acta Physiologica Scandinavica.

[3]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[4]  M. Kryger,et al.  Principles and Practice of Sleep Medicine , 1989 .

[5]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[6]  G Avanzini,et al.  Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. , 1989, The Journal of physiology.

[7]  W. B. Webb,et al.  The first night effect: an EEG study of sleep. , 1966, Psychophysiology.

[8]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[9]  A. Culebras,et al.  Relationship between sleep spindles and hypersomnia. , 1994, Sleep.

[10]  A. Tisano,et al.  Sleep features in Tourette's syndrome, neuroacanthocytosis and Huntington's chorea , 1995, Neurophysiologie Clinique/Clinical Neurophysiology.

[11]  R. Goetz,et al.  Spindle characteristics in prepubertal major depressives during an episode and after sustained recovery: a controlled study. , 1983, Sleep.

[12]  A. Bricolo,et al.  Effect of L-dopa or amantadine therapy on sleep spindles in Parkinsonism. , 1973, Electroencephalography and clinical neurophysiology.

[13]  P. Cortelli,et al.  Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. , 1986, The New England journal of medicine.

[14]  P. Cortelli,et al.  The thalamus participates in the regulation of the sleep-waking cycle. A clinico-pathological study in fatal familial thalamic degeneration. , 1989, Electroencephalography and clinical neurophysiology.

[15]  S. Andersson,et al.  LOCALIZED SLOW WAVE ACTIVITY IN THE SOMATOSENSORY CORTEX OF THE CAT. , 1964, Acta physiologica Scandinavica.

[16]  I Feinberg,et al.  EEG sleep patterns as a function of normal and pathological aging in man. , 1967, Journal of psychiatric research.

[17]  A. Arduini,et al.  On the mechanism of the EEG sleep patterns elicited by acute visual deafferentation , 1959 .

[18]  L C Johnson,et al.  Effect of flurazepam on sleep spindles and K-complexes. , 1976, Electroencephalography and clinical neurophysiology.

[19]  P. Bramanti,et al.  Sleep spindles in the initial stages of the vegetative state , 1994, The Italian Journal of Neurological Sciences.

[20]  R. Morison,et al.  ELECTRICAL ACTIVITY OF THE THALAMUS AND BASAL GANGLIA IN DECORTICATE CATS , 1945 .

[21]  M. Steriade Brain Electrical Activity and Sensory Processing during Waking and Sleep States , 2005 .

[22]  J. Monti,et al.  Flunitrazepam (Ro 5-4200) and sleep cycle in normal subjects , 1973, Psychopharmacologia.

[23]  G. Fein,et al.  Sleep spindles in normal elderly: comparison with young adult patterns and relation to nocturnal awakening, cognitive function and brain atrophy. , 1986, Electroencephalography and clinical neurophysiology.

[24]  R. Di Perri,et al.  Sleep spindles in healthy people: I) A quantitative, automatic analysis in young-adult subjects. , 1977, Bollettino della Societa italiana di biologia sperimentale.

[25]  E. Wolpert A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. , 1969 .